Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Xiaoyin Xu
  • Manami Kodaka
  • Hiroaki Iwasa
  • Yutaka HataEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101774


Historical Background

MAGI stands for membrane-associated guanylate kinase with an inverted arrangement of protein-protein interaction domains. Human genome has three MAGI genes (MAGI1, MAGI2, and MAGI3). The encoded proteins belong to the membrane-associated guanylate kinases (MAGUKs) and are collectively called MAGI family proteins. Other MAGUKs, such as ZO-1, PSD-95, and CASK, harbor the guanylate kinase (GK) domain in the C-terminal region, while MAGI family proteins have the GK domain in the N-terminal region (Funke et al. 2005). For this, MAGI family proteins are claimed to have an inverted arrangement of protein-protein interaction domains. Human MAGI2, rat MAGI2, and mouse MAGI2 were identified as an interacting protein with atrophin-1, synapse-associated protein 90-associated proteins (SAPAPs), and activin...

This is a preview of subscription content, log in to check access.


  1. Babayeva S, Zilber Y, Torban E. Planar cell polarity pathway regulates actin rearrangement, cell shape, motility, and nephrin distribution in podocytes. Am J Physiol Ren Physiol. 2011;300:F549–60.CrossRefGoogle Scholar
  2. Balbas MD, Burgess MR, Murali R, Wongvipat J, Skaggs BJ, Mundel P, et al. MAGI-2 scaffold protein is critical for kidney barrier function. Proc Natl Acad Sci USA. 2014;111:14876–81.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bauß K, Knapp B, Jores P, Roepman R, Kremer H, Wijk EV, et al. Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis. Hum Mol Genet. 2014;23:3923–42.CrossRefPubMedGoogle Scholar
  4. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470:214–20.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Buxbaum JD, Georgieva L, Young JJ, Plescia C, Kajiwara Y, Jiang Y, et al. Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Mol Psychiatry. 2008;13:162–72.CrossRefPubMedGoogle Scholar
  6. Chen YC, Huang RL, Huang YK, Liao YP, Su PH, Wang HC, et al. Methylomics analysis identifies epigenetically silenced genes and implies an activation of β-catenin signaling in cervical cancer. Int J Cancer. 2014;135:117–27.CrossRefPubMedGoogle Scholar
  7. Danielson E, Metallo J, Lee SH. Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors. Channels (Austin). 2012a;6:393–7.CrossRefGoogle Scholar
  8. Danielson E, Zhang N, Metallo J, Kaleka K, Shin SM, Gerges N, et al. S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors. J Neurosci. 2012b;32:6967–80.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Deng F, Price MG, Davis CF, Mori M, Burgess DL. Stargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain. J Neurosci. 2006;26:7875–84.CrossRefPubMedGoogle Scholar
  10. Dijkstra AE, Postma DS, van Ginneken B, Wielpütz MO, Schmidt M, Becker N, et al. Novel genes for airway wall thickness identified with combined genome-wide association and expression analyses. Am J Respir Crit Care Med. 2015;191:547–56.CrossRefPubMedGoogle Scholar
  11. Dong L, Pietsch S, Tan Z, Perner B, Sierig R, Kruspe D, et al. Integration of cistromic and transcriptomic analyses identifies Nphs2, Mafb, and Magi2 as Wilms’ tumor 1 target genes in podocyte differentiation and maintenance. J Am Soc Nephrol. 2015;26:2118–28.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Elboudwarej E, Cole M, Briggs FB, Fouts A, Fain PR, Quach H, et al. Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J Autoimmun. 2016;68:23–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Fukaya M, Kamata A, Hara Y, Tamaki H, Katsumata O, Ito N, et al. SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post-synaptic specializations of inhibitory synapses. J Neurochem. 2011;116:1122–37.CrossRefPubMedGoogle Scholar
  14. Funke L, Dakoji S, Bredt DS. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem. 2005;74:219–45.CrossRefPubMedGoogle Scholar
  15. Gee HY, Kim YW, Jo MJ, Namkung W, Kim JY, Park HW, et al. Synaptic scaffolding molecule binds to and regulates vasoactive intestinal polypeptide type-1 receptor in epithelial cells. Gastroenterology. 2009;137:607–17. 17.e1–4CrossRefPubMedGoogle Scholar
  16. Hirao K, Hata Y, Ide N, Takeuchi M, Irie M, Yao I, et al. A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem. 1998;273:21105–10.CrossRefPubMedGoogle Scholar
  17. Hisata S, Sakisaka T, Baba T, Yamada T, Aoki K, Matsuda M, et al. Rap1-PDZ-GEF1 interacts with a neurotrophin receptor at late endosomes, leading to sustained activation of Rap1 and ERK and neurite outgrowth. J Cell Biol. 2007;178:843–60.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hu Y, Li Z, Guo L, Wang L, Zhang L, Cai X, et al. MAGI-2 inhibits cell migration and proliferation via PTEN in human hepatocarcinoma cells. Arch Biochem Biophys. 2007;467:1–9.CrossRefPubMedGoogle Scholar
  19. Ihara K, Asanuma K, Fukuda T, Ohwada S, Yoshida M, Nishimori K. MAGI-2 is critical for the formation and maintenance of the glomerular filtration barrier in mouse kidney. Am J Pathol. 2014;184:2699–708.CrossRefPubMedGoogle Scholar
  20. Iida J, Hirabayashi S, Sato Y, Hata Y. Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol Cell Neurosci. 2004;27:497–508.CrossRefPubMedGoogle Scholar
  21. Iida J, Ishizaki H, Okamoto-Tanaka M, Kawata A, Sumita K, Ohgake S, et al. Synaptic scaffolding molecule alpha is a scaffold to mediate N-methyl-D-aspartate receptor-dependent RhoA activation in dendrites. Mol Cell Biol. 2007;27:4388–405.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Inaba Y, Tian QB, Okano A, Zhang JP, Sakagami H, Miyazawa S, et al. Brain-specific potential guanine nucleotide exchange factor for Arf, synArfGEF (Po), is localized to postsynaptic density. J Neurochem. 2004;89:1347–57.CrossRefPubMedGoogle Scholar
  23. Kawajiri A, Itoh N, Fukata M, Nakagawa M, Yamaga M, Iwamatsu A, et al. Identification of a novel beta-catenin-interacting protein. Biochem Biophys Res Commun. 2000;273:712–7.CrossRefPubMedGoogle Scholar
  24. Kawata A, Iida J, Ikeda M, Sato Y, Mori H, Kansaku A, et al. CIN85 is localized at synapses and forms a complex with S-SCAM via dendrin. J Biochem. 2006;139(5):931–9.CrossRefPubMedGoogle Scholar
  25. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein – nephrin – is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.CrossRefPubMedGoogle Scholar
  26. Kitamura K, Seike M, Okano T, Matsuda K, Miyanaga A, Mizutani H, et al. MiR-134/487b/655 cluster regulates TGF-β-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Ther. 2014;13:444–53.CrossRefPubMedGoogle Scholar
  27. Kitano J, Kimura K, Yamazaki Y, Soda T, Shigemoto R, Nakajima Y, et al. Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J Neurosci. 2002;22:1280–9.CrossRefPubMedGoogle Scholar
  28. Kitano J, Yamazaki Y, Kimura K, Masukado T, Nakajima Y, Nakanishi S. Tamalin is a scaffold protein that interacts with multiple neuronal proteins in distinct modes of protein-protein association. J Biol Chem. 2003;278:14762–8.CrossRefPubMedGoogle Scholar
  29. Kohda K, Kakegawa W, Matsuda S, Nakagami R, Kakiya N, Yuzaki M. The extreme C-terminus of GluRdelta2 is essential for induction of long-term depression in cerebellar slices. Eur J Neurosci. 2007;25:1357–62.CrossRefPubMedGoogle Scholar
  30. Koide T, Banno M, Aleksic B, Yamashita S, Kikuchi T, Kohmura K, et al. Common variants in MAGI2 gene are associated with increased risk for cognitive impairment in schizophrenic patients. PLoS One. 2012;7:e36836.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, et al. Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci. 1997;17:834–42.CrossRefPubMedGoogle Scholar
  32. Lefebvre J, Clarkson M, Massa F, Bradford ST, Charlet A, Buske F, et al. Alternatively spliced isoforms of WT1 control podocyte-specific gene expression. Kidney Int. 2015;88:321–31.CrossRefPubMedGoogle Scholar
  33. Lehtonen S, Ryan JJ, Kudlicka K, Iino N, Zhou H, Farquhar MG. Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and alpha-actinin are components of the nephrin multiprotein complex. Proc Natl Acad Sci USA. 2005;102:9814–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mahdian R, Nodouzi V, Asgari M, Rezaie M, Alizadeh J, Yousefi B, et al. Expression profile of MAGI2 gene as a novel biomarker in combination with major deregulated genes in prostate cancer. Mol Biol Rep. 2014;41:6125–31.CrossRefPubMedGoogle Scholar
  35. Marshall CR, Young EJ, Pani AM, Freckmann ML, Lacassie Y, Howald C, et al. Infantile spasms is associated with deletion of the MAGI2 gene on chromosome 7q11.23-q21.11. Am J Hum Genet. 2008;83:106–11.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Mathur P, Yang J. Usher syndrome: hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta. 2015;1852:406–20.CrossRefPubMedGoogle Scholar
  37. McGovern DP, Taylor KD, Landers C, Derkowski C, Dutridge D, Dubinsky M, et al. MAGI2 genetic variation and inflammatory bowel disease. Inflamm Bowel Dis. 2009;15:75–83.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Mok H, Shin H, Kim S, Lee JR, Yoon J, Kim E. Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-1 proteins. J Neurosci. 2002;22:5253–8.CrossRefPubMedGoogle Scholar
  39. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, et al. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 1994;79:1209–20.CrossRefPubMedGoogle Scholar
  40. Nishimura W, Yao I, Iida J, Tanaka N, Hata Y. Interaction of synaptic scaffolding molecule and Beta-catenin. J Neurosci. 2002;22:757–65.CrossRefPubMedGoogle Scholar
  41. Ohtsuka T, Hata Y, Ide N, Yasuda T, Inoue E, Inoue T, et al. nRap GEP: a novel neural GDP/GTP exchange protein for rap1 small G protein that interacts with synaptic scaffolding molecule (S-SCAM). Biochem Biophys Res Commun. 1999;265:38–44.CrossRefPubMedGoogle Scholar
  42. Peterson JF, Thakur P, Peffer A, Kolthoff M, Kochmar SJ, Surti U. Seizure disorder in a patient with a 5.09 Mb 7q11.23-q21.11 microdeletion including the MAGI2 gene. J Assoc Genet Technol. 2014;40:16–21.PubMedGoogle Scholar
  43. Röthlisberger B, Hoigné I, Huber AR, Brunschwiler W, Capone MA. Deletion of 7q11.21-q11.23 and infantile spasms without deletion of MAGI2. Am J Med Genet A. 2010;152A:434–7.CrossRefPubMedGoogle Scholar
  44. Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo YY. MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene. 2011;30:822–31.CrossRefPubMedGoogle Scholar
  45. Shi SH, Cox DN, Wang D, Jan LY, Jan YN. Control of dendrite arborization by an Ig family member, dendrite arborization and synapse maturation 1 (Dasm1). Proc Natl Acad Sci USA. 2004a;101:13341–5.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Shi SH, Cheng T, Jan LY, Jan YN. The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation. Proc Natl Acad Sci USA. 2004b;101:13346–51.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Shoji H, Tsuchida K, Kishi H, Yamakawa N, Matsuzaki T, Liu Z, et al. Identification and characterization of a PDZ protein that interacts with activin type II receptors. J Biol Chem. 2000;275:5485–92.CrossRefPubMedGoogle Scholar
  48. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature. 2002;416:183–7.CrossRefPubMedGoogle Scholar
  49. Stan A, Pielarski KN, Brigadski T, Wittenmayer N, Fedorchenko O, Gohla A, et al. Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci USA. 2010;107:11116–21.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Sumita K, Sato Y, Iida J, Kawata A, Hamano M, Hirabayashi S, et al. Synaptic scaffolding molecule (S-SCAM) membrane-associated guanylate kinase with inverted organization (MAGI)-2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons. J Neurochem. 2007;100:154–66.CrossRefPubMedGoogle Scholar
  51. Thomas M, Laura R, Hepner K, Guccione E, Sawyers C, Lasky L, et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene. 2002;21:5088–96.CrossRefPubMedGoogle Scholar
  52. Tolkacheva T, Boddapati M, Sanfiz A, Tsuchida K, Kimmelman AC, Chan AM. Regulation of PTEN binding to MAGI-2 by two putative phosphorylation sites at threonine 382 and 383. Cancer Res. 2001;61:4985–9.PubMedGoogle Scholar
  53. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008;320:539–43.CrossRefPubMedGoogle Scholar
  54. Wapenaar MC, Monsuur AJ, van Bodegraven AA, Weersma RK, Bevova MR, Linskens RK, et al. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut. 2008;57:463–7.CrossRefPubMedGoogle Scholar
  55. Woo J, Kwon SK, Nam J, Choi S, Takahashi H, Krueger D, et al. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. J Cell Biol. 2013;201:929–44.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Wood JD, Yuan J, Margolis RL, Colomer V, Duan K, Kushi J, et al. Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol Cell Neurosci. 1998;11:149–60.CrossRefPubMedGoogle Scholar
  57. Worby CA, Dixon JE. PTEN. Annu Rev Biochem. 2014;83:641–69.CrossRefPubMedGoogle Scholar
  58. Wright GJ, Leslie JD, Ariza-McNaughton L, Lewis J. Delta proteins and MAGI proteins: an interaction of Notch ligands with intracellular scaffolding molecules and its significance for zebrafish development. Development. 2004;131:5659–69.CrossRefPubMedGoogle Scholar
  59. Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ, et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A. 2000;97:4233–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA. Beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J Biol Chem. 2001;276:41310–7.CrossRefPubMedGoogle Scholar
  61. Yamada A, Irie K, Deguchi-Tawarada M, Ohtsuka T, Takai Y. Nectin-dependent localization of synaptic scaffolding molecule (S-SCAM) at the puncta adherentia junctions formed between the mossy fibre terminals and the dendrites of pyramidal cells in the CA3 area of the mouse hippocampus. Genes Cells. 2003;8:985–94.CrossRefPubMedGoogle Scholar
  62. Yap CC, Muto Y, Kishida H, Hashikawa T, Yano R. PKC regulates the delta2 glutamate receptor interaction with S-SCAM/MAGI-2 protein. Biochem Biophys Res Commun. 2003;301:1122–8.CrossRefPubMedGoogle Scholar
  63. Zhang N, Zhong P, Shin SM, Metallo J, Danielson E, Olsen CM, et al. S-SCAM, a rare copy number variation gene, induces schizophrenia-related endophenotypes in transgenic mouse model. J Neurosci. 2015;35:1892–904.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Xiaoyin Xu
    • 1
    • 2
  • Manami Kodaka
    • 1
  • Hiroaki Iwasa
    • 1
  • Yutaka Hata
    • 1
    • 3
    Email author
  1. 1.Department of Medical Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Department of Breast SurgeryThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  3. 3.Center for Brain Integration ResearchTokyo Medical and Dental UniversityTokyoJapan