Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

FXYD1 (Phospholemman)

  • Kyung Chan Park
  • Davor Pavlovic
  • Michael J. Shattock
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101757

Synonyms

Historical Background

Phospholemman (PLM) is a 72-amino-acid type I single-span membrane protein, belonging to the FXYD (pronounced “fix-it”) family of ion transport regulators. These smallmembrane proteins are tissue-specific regulators of the Na/K ATPase (Na/K pump or NKA). PLM is predominantly expressed in striated (cardiac and skeletal) and smooth muscle (Bogaev et al. 2001; Rembold et al. 2005). However, it is also detectable to a lesser extent in the kidney (Wetzel and Sweadner 2003), liver (Bogaev et al. 2001), cerebellum, and choroid plexus (Feschenko et al. 2003).

PLM was first identified in canine and guinea pig myocardium as a 15 kDa sarcolemmal protein and was later shown to be the principle sarcolemmal substrate for protein kinases A and C (PKA and PKC) (Presti et al. 1985a, b). At the time, the correlation between PLM phosphorylation and PKA-induced positive inotropy led Prest and colleagues to speculate that this...

This is a preview of subscription content, log in to check access.

References

  1. Attali B, Latter H, Rachamim N, Garty H. A corticosteroid-induced gene expressing an “IsK-like” K+ channel activity in Xenopus oocytes. Proc Natl Acad Sci USA. 1995;92:6092–6.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Beguin P, Crambert G, Monnet-Tschudi F, Uldry M, Horisberger JD, Garty H, et al. FXYD7 is a brain-specific regulator of Na,K-ATPase alpha 1-beta isozymes. EMBO J. 2002;21:3264–73.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Beguin P, Wang X, Firsov D, Puoti A, Claeys D, Horisberger JD, et al. The gamma subunit is a specific component of the Na,K-ATPase and modulates its transport function. EMBO J. 1997;16:4250–60.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bell JR, Kennington E, Fuller W, Dighe K, Donoghue P, Clark JE, et al. Characterization of the phospholemman knockout mouse heart: depressed left ventricular function with increased Na-K-ATPase activity. Am J Physiol Heart Circ Physiol. 2008;294:H613–21.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bell JR, Lloyd D, Curl CL, Delbridge LM, Shattock MJ. Cell volume control in phospholemman (PLM) knockout mice: do cardiac myocytes demonstrate a regulatory volume decrease and is this influenced by deletion of PLM? Exp Physiol. 2009;94:330–43.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bibert S, Liu CC, Figtree GA, Garcia A, Hamilton EJ, Marassi FM, et al. FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its β1 subunit. J Biol Chem. 2011;286:18562–72.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bogaev RC, Jia LG, Kobayashi YM, Palmer CJ, Mounsey JP, Moorman JR, et al. Gene structure and expression of phospholemman in mouse. Gene. 2001;271:69–79.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boguslavskyi A, Pavlovic D, Aughton K, Clark JE, Howie J, Fuller W, et al. Cardiac hypertrophy in mice expressing unphosphorylatable phospholemman. Cardiovasc Res. 2014;104:72–82.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bossuyt J, Despa S, Han F, Hou Z, Robia SL, Lingrel JB, et al. Isoform specificity of the Na/K-ATPase association and regulation by phospholemman. J Biol Chem. 2009;284:26749–57.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bossuyt J, Despa S, Martin JL, Bers DM. Phospholemman phosphorylation alters its fluorescence resonance energy transfer with the Na/K-ATPase pump. J Biol Chem. 2006;281:32765–73.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cheung JY, Zhang XQ, Song J, Gao E, Rabinowitz JE, Chan TO, et al. Phospholemman: a novel cardiac stress protein. J Clin Transl Sci. 2010;3:189–96.CrossRefGoogle Scholar
  12. Crambert G, Fuzesi M, Garty H, Karlish S, Geering K. Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc Natl Acad Sci USA. 2002;99:11476–81.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Despa S, Bossuyt J, Han F, Ginsburg KS, Jia LG, Kutchai H, et al. Phospholemman-phosphorylation mediates the β-adrenergic effects on Na/K pump function in cardiac myocytes. Circ Res. 2005;97:252–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Despa S, Tucker AL, Bers DM. Phospholemman-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during β-adrenergic stimulation in mouse ventricular myocytes. Circulation. 2008;117:1849–55.PubMedPubMedCentralCrossRefGoogle Scholar
  15. El-Armouche A, Wittkopper K, Fuller W, Howie J, Shattock MJ, Pavlovic D. Phospholemman-dependent regulation of the cardiac Na/K-ATPase activity is modulated by inhibitor-1 sensitive type-1 phosphatase. FASEB J. 2011;25:4467–75.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ. Phospholemman, a single-span membrane protein, is an accessory protein of Na,K-ATPase in cerebellum and choroid plexus. J Neurosci. 2003;23:2161–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Fu X, Kamps MP. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3 T3 fibroblasts. Mol Cell Biol. 1997;17:1503–12.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fuller W, Howie J, McLatchie LM, Weber RJ, Hastie CJ, Burness K, et al. FXYD1 phosphorylation in vitro and in adult rat cardiac myocytes: threonine 69 is a novel substrate for protein kinase C. Am J Physiol Cell Physiol. 2009;296:C1346–55.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Garty H, Karlish SJ. Role of FXYD proteins in ion transport. Annu Rev Physiol. 2006;68:431–59.CrossRefPubMedGoogle Scholar
  20. Geering K. FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol. 2006;290:F241–50.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Han F, Bossuyt J, Despa S, Tucker AL, Bers DM. Phospholemman phosphorylation mediates the protein kinase C-dependent effects on Na+/K+ pump function in cardiac myocytes. Circ Res. 2006;99:1376–83.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Howie J, Tulloch LB, Shattock MJ, Fuller W. Regulation of the cardiac Na+ pump by palmitoylation of its catalytic and regulatory subunits. Biochem Soc Trans. 2013;41:95–100.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kaplan JH. Biochemistry of Na. K-ATPase Annu Rev Biochem. 2002;71:511–35.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lindzen M, Gottschalk KE, Fuzesi M, Garty H, Karlish SJ. Structural interactions between FXYD proteins and Na+,K+-ATPase: α/β/FXYD subunit stoichiometry and cross-linking. J Biol Chem. 2006;281:5947–55.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Mercer RW, Biemesderfer D, Bliss Jr DP, Collins JH, Forbush B. Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na. K-ATPase J Biol Chem. 1993;121:579–86.Google Scholar
  26. Mirza MA, Zhang XQ, Ahlers BA, Qureshi A, Carl LL, Song J, et al. Effects of phospholemman downregulation on contractility and [Ca2+]i transients in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol. 2004;286:H1322–30.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Mishra NK, Habeck M, Kirchner C, Haviv H, Peleg Y, Eisenstein M, et al. Molecular mechanisms and kinetic effects of FXYD1 and phosphomimetic mutants on purified human Na, K-ATPase. J Biol Chem. 2015;290:28746–59.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Moorman JR, Ackerman SJ, Kowdley GC, Griffin MP, Mounsey JP, Chen Z, et al. Unitary anion currents through phospholemman channel molecules. Nature. 1995;377:737–40.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Moorman JR, Palmer CJ, John 3rd JE, Durieux ME, Jones LR. Phospholemman expression induces a hyperpolarization-activated chloride current in Xenopus oocytes. J Biol Chem. 1992;267:14551–4.PubMedPubMedCentralGoogle Scholar
  30. Morrison BW, Moorman JR, Kowdley GC, Kobayashi YM, Jones LR, Leder P. Mat-8, a novel phospholemman-like protein expressed in human breast tumors, induces a chloride conductance in Xenopus oocytes. J Biol Chem. 1995;270:2176–82.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, et al. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Palmer CJ, Scott BT, Jones LR. Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem. 1991;266:11126–30.PubMedPubMedCentralGoogle Scholar
  33. Pavlovic D, Fuller W, Shattock MJ. The intracellular region of FXYD1 is sufficient to regulate cardiac Na/K ATPase. FASEB J. 2007;21:1539–46.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Pavlovic D, Fuller W, Shattock MJ. Novel regulation of cardiac Na pump via phospholemman. J Mol Cell Cardiol. 2013a;61:83–93.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Pavlovic D, Hall AR, Kennington EJ, Aughton K, Boguslavskyi A, Fuller W, et al. Nitric oxide regulates cardiac intracellular Na+ and Ca2+ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism. J Mol Cell Cardiol. 2013b;61:164–71.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab. 2016;311:E1–e31.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Presti CF, Jones LR, Lindemann JP. Isoproterenol-induced phosphorylation of a 15-kilodalton sarcolemmal protein in intact myocardium. J Biol Chem. 1985a;260:3860–7.PubMedPubMedCentralGoogle Scholar
  38. Presti CF, Scott BT, Jones LR. Identification of an endogenous protein kinase C activity and its intrinsic 15-kilodalton substrate in purified canine cardiac sarcolemmal vesicles. J Biol Chem. 1985b;260:13879–89.PubMedPubMedCentralGoogle Scholar
  39. Rembold CM, Ripley ML, Meeks MK, Geddis LM, Kutchai HC, Marassi FM, et al. Serine 68 phospholemman phosphorylation during forskolin-induced swine carotid artery relaxation. J Vasc Res. 2005;42:483–91.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Sweadner KJ, Rael E. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics. 2000;68:41–56.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Teriete P, Franzin CM, Choi J, Marassi FM. Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles. Biochemistry. 2007;46:6774–83.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol. 2000;279:C541–66.CrossRefPubMedGoogle Scholar
  43. Tulloch LB, Howie J, Wypijewski KJ, Wilson CR, Bernard WG, Shattock MJ, et al. The inhibitory effect of phospholemman on the sodium pump requires its palmitoylation. J Biol Chem. 2011;286:36020–31.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Wang X, Gao G, Guo K, Yarotskyy V, Huang C, Elmslie KS, et al. Phospholemman modulates the gating of cardiac L-type calcium channels. Biophys J. 2010;98:1149–59.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Wetzel RK, Sweadner KJ. Phospholemman expression in extraglomerular mesangium and afferent arteriole of the juxtaglomerular apparatus. Am J Physiol Renal Physiol. 2003;285:F121–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Yamaguchi F, Yamaguchi K, Tai Y, Sugimoto K, Tokuda M. Molecular cloning and characterization of a novel phospholemman-like protein from rat hippocampus. Brain Res Mol Brain Res. 2001;86:189–92.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Zhang XQ, Qureshi A, Song J, Carl LL, Tian Q, Stahl RC, et al. Phospholemman modulates Na+/Ca2+ exchange in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol. 2003;284:H225–33.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Zhang XQ, Wang J, Song J, Rabinowitz J, Chen X, Houser SR, et al. Regulation of L-type calcium channel by phospholemman in cardiac myocytes. J Mol Cell Cardiol. 2015;84:104–11.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kyung Chan Park
    • 1
  • Davor Pavlovic
    • 2
  • Michael J. Shattock
    • 1
  1. 1.British Heart Foundation Centre of Research Excellence, Cardiovascular DivisionKing’s College London, The Rayne Institute, St Thomas’ HospitalLondonUK
  2. 2.Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK