Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

PEPCK-M

  • Richard G. Kibbey
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101756

Synonyms

Historical Background

The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) catalyzes the cataplerotic reaction utilizing mitochondrial GTP (mtGTP) to convert oxaloacetate to phosphoenolpyruvate (PEP), GDP, and CO2 in the mitochondrial matrix. Because of its dependence on mtGTP and since mitochondria lack a GTP transporter, mitochondrial PEP synthesis is enzymatically coupled to the GTP-specific isoform of succinyl-CoA synthetase reaction as a source of GTP. In pancreatic beta-cells, this reaction generates a second messenger coupled to insulin secretion (Stark et al. 2009). In the liver and possibly kidney, the mitochondrial PEP is used for gluconeogenesis and glyceroneogenesis (Stark et al. 2014). This chapter will focus on the mammalian mitochondrial isoform and its relationship to maintaining metabolic homeostasis through the secretion of insulin,...

This is a preview of subscription content, log in to check access.

References

  1. Agca C, Greenfield RB, Hartwell JR, Donkin SS. Cloning and characterization of bovine cytosolic and mitochondrial PEPCK during transition to lactation. Physiol Genomics. 2002;11(2):53–63.CrossRefPubMedGoogle Scholar
  2. Aich S, Delbaere LT. Phylogenetic study of the evolution of PEP-carboxykinase. Evol Bioinformatics Online. 2007;3:333–40.Google Scholar
  3. Allen A, Kwagh J, Fang J, Stanley CA, Smith TJ. Evolution of glutamate dehydrogenase regulation of insulin homeostasis is an example of molecular exaptation. Biochemistry. 2004;43(45):14431–43.CrossRefPubMedGoogle Scholar
  4. Beale EG, Chrapkiewicz NB, Scoble HA, Metz RJ, Quick DP, Noble RL, et al. Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP). Structures of the protein, messenger RNA, and gene. J Biol Chem. 1985;260(19):10748–60.PubMedGoogle Scholar
  5. Beale EG, Harvey BJ, Forest C. PCK1 and PCK2 as candidate diabetes and obesity genes. Cell Biochem Biophys. 2007;48(2–3):89–95.CrossRefPubMedGoogle Scholar
  6. Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, et al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 2007;5(4):313–20.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Carlson GM, Holyoak T. Structural insights into the mechanism of phosphoenolpyruvate carboxykinase catalysis. J Biol Chem. 2009;284(40):27037–41.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB, et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell. 2012;22(4):547–60.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen CY, Sato Y, Schramm VL. Isotope trapping and positional isotope exchange with rat and chicken liver phosphoenolpyruvate carboxykinases. Biochemistry. 1991;30(17):4143–51.CrossRefPubMedGoogle Scholar
  10. Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell. 2016;166(5):1324–37 .e11PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dunten P, Belunis C, Crowther R, Hollfelder K, Kammlott U, Levin W, et al. Crystal structure of human cytosolic phosphoenolpyruvate carboxykinase reveals a new GTP-binding site. J Mol Biol. 2002;316(2):257–64.CrossRefPubMedGoogle Scholar
  12. Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. Adv Enzymol Relat Areas Mol Biol. 1994;69:203–81.PubMedGoogle Scholar
  13. Hebda CA, Nowak T. The purification, characterization, and activation of phosphoenolpyruvate carboxykinase from chicken liver mitochondria. J Biol Chem. 1982;257(10):5503–14.PubMedGoogle Scholar
  14. Hedeskov CJ, Capito K. Pancreatic islet metabolism of pyruvate and other potentiators of insulin release. Effects of starvation. Horm Metab Res Suppl. 1980;Suppl 10:8–13.PubMedGoogle Scholar
  15. Hedeskov CJ, Capito K, Thams P. Phosphoenolpyruvate carboxykinase in mouse pancreatic islets. ATP-induced changes in sensitivity to Mn2+ activation. Biochim Biophys Acta. 1984;791(1):37–44.CrossRefPubMedGoogle Scholar
  16. Ishihara N, Kikuchi G. Studies on the functional relationship between the phosphopyruvate synthesis and the substrate level phosphorylation in guinea-pig liver mitochondria. Biochim Biophys Acta. 1968;153(4):733–48.CrossRefPubMedGoogle Scholar
  17. Jamison RA, Stark R, Dong J, Yonemitsu S, Zhang D, Shulman GI, et al. Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats. Am J Physiol Endocrinol Metab. 2011;301(6):E1174–83.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011;43(1):33–44.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Jones DH, Raymer DM, Schoelen SL. The activity of phosphoenolpyruvate carboxykinase throughout the lactation cycle of the guinea pig mammary gland. Proc Soc Exp Biol Med. 1989;192(1):16–22.CrossRefPubMedGoogle Scholar
  20. Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW, Shulman GI. Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab. 2007;5(4):253–64.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Leithner K, Wohlkoenig C, Stacher E, Lindenmann J, Hofmann NA, Galle B, et al. Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model – role of tumor stroma cells. BMC Cancer. 2014;14:40.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Leonard JV, Hyland K, Furukawa N, Clayton PT. Mitochondrial phosphoenolpyruvate carboxykinase deficiency. Eur J Pediatr. 1991;150(3):198–9.CrossRefPubMedGoogle Scholar
  23. Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell. 2009;136(6):1073–84.PubMedPubMedCentralCrossRefGoogle Scholar
  24. MacDonald MJ, Chang CM. Do pancreatic islets contain significant amounts of phosphoenolpyruvate carboxykinase or ferroactivator activity? Diabetes. 1985;34(3):246–50.CrossRefPubMedGoogle Scholar
  25. MacDonald MJ, McKenzie DI, Walker TM, Kaysen JH. Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets. Horm Metab Res. 1992;24(4):158–60.CrossRefPubMedGoogle Scholar
  26. McKee EE, Bentley AT, Smith Jr RM, Ciaccio CE. Origin of guanine nucleotides in isolated heart mitochondria. Biochem Biophys Res Commun. 1999;257(2):466–72.CrossRefPubMedGoogle Scholar
  27. McKee EE, Bentley AT, Smith Jr RM, Kraas JR, Ciaccio CE. Guanine nucleotide transport by atractyloside-sensitive and -insensitive carriers in isolated heart mitochondria. Am J Physiol Cell Physiol. 2000;279(6):C1870–9.CrossRefPubMedGoogle Scholar
  28. Mendez-Lucas A, Hyrossova P, Novellasdemunt L, Vinals F, Perales JC. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. J Biol Chem. 2014;289(32):22090–102.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Modaressi S, Brechtel K, Christ B, Jungermann K. Human mitochondrial phosphoenolpyruvate carboxykinase 2 gene. Structure, chromosomal localization and tissue-specific expression. Biochem J. 1998;333(Pt 2):359–66.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Samuel VT, Beddow SA, Iwasaki T, Zhang XM, Chu X, Still CD, et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes. Proc Natl Acad Sci U S A. 2009;106(29):12121–6.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Siess EA, Brocks DG, Lattke HK, Wieland OH. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977;166(2):225–35.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Stark R, Kibbey RG. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked? Biochim Biophys Acta. 2014;1840:1313–30.CrossRefPubMedGoogle Scholar
  33. Stark R, Pasquel F, Turcu A, Pongratz RL, Roden M, Cline GW, et al. Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. J Biol Chem. 2009;284(39):26578–90.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Stark R, Guebre-Egziabher F, Zhao X, Feriod C, Dong J, Alves TC, et al. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis. J Biol Chem. 2014;289(11):7257–63.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Suzuki M, Yamasaki T, Shinohata R, Hata M, Nakajima H, Kono N. Cloning and reporter analysis of human mitochondrial phosphoenolpyruvate carboxykinase gene promoter. Gene. 2004;338(2):157–62.CrossRefPubMedGoogle Scholar
  36. Utter MF, Kurahashi K. Purification of oxalacetic carboxylase from chicken liver. J Biol Chem. 1954;207(2):787–802.PubMedGoogle Scholar
  37. Vozza A, Blanco E, Palmieri L, Palmieri F. Identification of the mitochondrial GTP/GDP transporter in Saccharomyces cerevisiae. J Biol Chem. 2004;279(20):20850–7.CrossRefPubMedGoogle Scholar
  38. Watt WB, Hudson RR, Wang B, Wang E. A genetic polymorphism evolving in parallel in two cell compartments and in two clades. BMC Evol Biol. 2013;13:9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Wood HG, Werkman CH. The utilization of CO(2) by the propionic acid bacteria. Biochem J. 1938;32(7):1262–71.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Xiong Y, Lei QY, Zhao S, Guan KL. Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harb Symp Quant Biol. 2011;76:285–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departments of Medicine (Endocrinology) and Cellular and Molecular PhysiologyYale School of MedicineNew HavenUSA