Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

NTCP (Sodium Taurocholate Cotransporting Polypeptide)

  • Senko Tsukuda
  • Masashi Iwamoto
  • Koichi WatashiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101735


Historical Background

A sodium-dependent transport system for conjugated bile salts was extensively characterized in early studies using perfused rat liver and isolated rat and human basolateral membranes. The factor responsible for the activity of the system was first identified by Dr. Meier’s group in 1990. In their seminal study, they injected rat liver poly (A)+ RNA into Xenopus laevis oocytes and observed the functional expression of sodium-dependent taurocholate uptake (Hagenbuch et al. 1990). Meier and coworkers size-fractionated and enriched the active mRNA, and showed that the 1.5∼3 Kb subfraction supported bile salt uptake. Following expression cloning of a rat cDNA library, they succeeded in cloning rat Ntcp, which consists of 1738 nucleotides that encode an open reading frame and whose expression produces a 362 aa polypeptide (Hagenbuch et al. 1991). NTCP was subsequently cloned...

This is a preview of subscription content, log in to check access.


  1. Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch. 2014;466(1):77–89.CrossRefPubMedGoogle Scholar
  2. Bogomolov P, et al. Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: first results of a phase Ib/IIa study. J Hepatol. 2016;65(3):490–8.CrossRefPubMedGoogle Scholar
  3. Claro da Silva T, Polli JE, Swaan PW. The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Asp Med. 2013;34(2–3):252–69.CrossRefGoogle Scholar
  4. Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009;50(12):2340–57.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Hagenbuch B, Lubbert H, Stieger B, Meier PJ. Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes. J Biol Chem. 1990;265(10):5357–60.PubMedGoogle Scholar
  6. Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991;88(23):10629–33.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ho RH, Leake BF, Roberts RL, Lee W, Kim RB. Ethnicity-dependent polymorphism in Na+−taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem. 2004;279(8):7213–22.CrossRefPubMedGoogle Scholar
  8. Hou, X., Mao F., Jing Z., Liu X., Li W. Inactivation of Ntcp causes gallbladder diseases in mice. International meeting on molecular biology of hepatitis B viruses; 2015, Bad Nauheim, Germany, p. 0–177.Google Scholar
  9. Hu HH, et al. The rs2296651 (S267F) variant on NTCP (SLC10A1) is inversely associated with chronic hepatitis B and progression to cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B. Gut. 2016;65(9):1514–21.CrossRefPubMedGoogle Scholar
  10. Iwamoto M, Watashi K. Closing the door on hepatitis B and D virus entry: what are our therapeutic options? Futur Virol. 2016;11(11):715–8.CrossRefGoogle Scholar
  11. Kosters A, Karpen SJ. Bile acid transporters in health and disease. Xenobiotica. 2008;38(7–8):1043–71.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Peng L, et al. The p.Ser267Phe variant in SLC10A1 is associated with resistance to chronic hepatitis B. Hepatology. 2015;61(4):1251–60.CrossRefPubMedGoogle Scholar
  13. Slijepcevic D, et al. Impaired uptake of conjugated bile acids and hepatitis b virus pres1-binding in na(+) -taurocholate cotransporting polypeptide knockout mice. Hepatology. 2015;62(1):207–19.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol. 2011;201:205–59.CrossRefGoogle Scholar
  15. Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology. 2014;147(1):48–64.CrossRefPubMedGoogle Scholar
  16. Vaz FM, et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology. 2015;61(1):260–7.CrossRefPubMedGoogle Scholar
  17. Watashi K, Wakita T. Hepatitis B virus and hepatitis D virus entry, species specificity, and tissue tropism. Cold Spring Harb Perspect Med. 2015;5(8):a021378.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Yan H, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. elife. 2012;1:e00049.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Yan H, et al. Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol. 2014;88(6):3273–84.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Yan H, Liu Y, Sui J, Li W. NTCP opens the door for hepatitis B virus infection. Antivir Res. 2015;121:24–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Senko Tsukuda
    • 1
  • Masashi Iwamoto
    • 1
  • Koichi Watashi
    • 1
    Email author
  1. 1.Department of Virology IINational Institute of Infectious DiseasesTokyoJapan