Skip to main content

NGF

  • 114 Accesses

Synonyms

Beta-nerve growth factor; Beta-NGF; HSAN5; Nerve growth factor; Nerve growth factor (beta polypeptide); Nerve growth factor, beta; Nerve growth factor, beta polypeptide; Nerve growth factor, beta subunit; Ngfb; NGFB

Historical Background

Nerve growth factor (NGF) was discovered by Rita Levi-Montalcini, who revealed that mouse sarcomas transplanted into chicken embryos secrete a factor into the blood that induces sensory and sympathetic nerve growth (Levi-Montalcini 1952; Levi-Montalcini 1987). She was awarded the Nobel Prize in 1986 for this work (Abott 2009). NGF is indispensable for the prenatal growth of sensory and sympathetic nerves. Two NGF receptors have been identified, one with high affinity and the other with low affinity for NGF (Landreth and Shooter 1980); these were later named tropomyosin receptor kinase (Trk) A and p75 neurotrophin receptor (p75NTR), respectively. NGF was also identified as a key molecule in the development of basal forebrain cholinergic...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67199-4_101731
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   5,499.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-67199-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   7,499.99
Price excludes VAT (USA)
NGF, Fig. 1
NGF, Fig. 2

References

  • Abbott A. One hundred years of Rita. Nature. 2009;458:564–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med. 2012;10:239.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Artim SC, Mendrola JM, Lemmon MA. Assessing the range of kinase autoinhibition mechanisms in the insulin receptor family. Biochem J. 2012;448:213–20.

    PubMed  CrossRef  CAS  Google Scholar 

  • Bandtlow CE, Heumann R, Schwab ME, Thoenen H. Cellular localization of nerve growth factor synthesis by in situ hybridization. EMBO J. 1987;6:891–9.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Bradshaw RA, Pundavela J, Biarc J, Chalkley RJ, Burlingame AL, Hondermarck H. NGF and proNGF: regulation of neuronal and neoplastic responses through receptor signaling. Adv Biol Regul. 2015;58:16–27.

    CrossRef  CAS  PubMed  Google Scholar 

  • Bucci C, Alifano P, Cogli L. The role of Rab protein in neuronal cells and in the trafficking of neurotrophin receptors. Membranes. 2014;4:642–77.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cunningham ME, Greene LA. A function-structure model for NGF-activated TRK. EMBO J. 1998;17:7282–93.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Chen KS, Nishimura MC, Armanini MP, Crowley C, Spencer SD, Phillips HS. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci. 1997;17:7288–96.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Einarsdottir E, Carlsson A, Minde J, Toolanen G, Svensson O, Solders G, Holmgren G, Holmberg D, Holmberg M. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Human Mol Genet. 2004;8:799–80.

    CrossRef  CAS  Google Scholar 

  • Hirose M, Kuroda Y, Murata E. NGF/TrkA signaling as atherapeutic target for pain. Pain Pract. 2016;16:175–82.

    CrossRef  PubMed  Google Scholar 

  • Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K, Kawano T, Mitsubuchi H, Tonoki H, Awaya Y, Matsuda I. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet. 1996;13:485–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Iulita MF, Cuello AC. Nerve growth factor metabolic dysfunction in Alzheimer’s disease and Down syndrome. Trends Pharmacol Sci. 2014;35:338–48.

    CrossRef  CAS  PubMed  Google Scholar 

  • Khan N, Smith MT. Neurotrophins and neuropathic pain: role in pathobiology. Molecules. 2015;20:10657–88.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Krock E, Currie JB, Weber MH, Ouellet JA, Stone LS, Rosenzweig DH, Haglund L. Nerve growth factor is regulated by toll-like receptor 2 in human intervertebral disks. J Biol Chem. 2016;291:3541–51.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lambiase A, Mantelli F, Sacchetti M, Rossi S, Aloe L, Bonini S. Clinical applications of NGF in occular diseases. Arch Ital Biol. 2011;149:283–92.

    PubMed  Google Scholar 

  • Landreth GE, Shooter EM. Nerve growth factor receptors on PC12 cells: ligand-induced conversion from low- to high-affinity states. Proc Natl Acad Sci USA. 1980;77:4751–5.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Levi-Montalcini R. Effects of mouse tumor transplantation on the nervous system. Ann NY Acad Sci. 1952;55:330–43.

    CrossRef  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987;237:1154–62.

    CrossRef  CAS  PubMed  Google Scholar 

  • Marlin MC, Li G. Biogenesis and function of the NGF/TrkA signaling endosome. Int Rev Cell Mol Biol. 2015;314:239–57.

    CrossRef  PubMed  Google Scholar 

  • Miranda C, Di Virgilio M, Selleri S, Zanotti G, Pagliardini S, Pierotti MA, Greco A. Novel pathogenic mechanisms of congenital insensitivity to pain with anhidrosis genetic disorder unveiled by functional analysis of neurtrophic tyrosine receptor kinase type 1/nerve growth factor receptor mutations. J Biol Chem. 2002;277:6455–62.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mitchell DJ, Blasier KR, Jeffery ED, Ross MW, Pullikuth AK, Suo D, Park J, Smiley WR, Lo KW, Shabanowitz J, Deppmann CD, Trinidad JC, Hunt DF, Catling AD, Pfister KK. Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J Neurosci. 2012;32:15495–510.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Otten U, Gadient RA. Neurotrophins and cytokimes – intermediaries between the immune and nervous systems. Int J Dev Neurosci. 1995;13:147–51.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wiesmann C, de Vos AM. Nerve growth factor: structure and function. Cell Mol Life Sci. 2001;58:748–59.

    CrossRef  CAS  PubMed  Google Scholar 

  • Yamamoto M, Sobue G, Yamamoto K, Terao S, Mitsuma T. Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75NGFR, TrkA, TrkB, and TrkC) in the adult human peripheral nervous system and nonneural tissues. Neurochem Res. 1996;21:929–38.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munetaka Hirose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Hirose, M. (2018). NGF. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101731

Download citation