Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Elpida Tsonou
  • Chiara Pantarelli
  • Kirsti Hornigold
  • Heidi C. E. WelchEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101727


Historical Background

P-Rex2 (PIP3-dependent Rac exchanger 2, PREX2) is a Dbl-type guanine-nucleotide exchange factor (GEF) that activates the small G protein (small GTPase) Rac1, a member of the Rho family. P-Rex2 was discovered in 2004 on the basis of its homology to P-Rex1 (Donald et al. 2004; Rosenfeldt et al. 2004). Like P-Rex1, P-Rex2 is synergistically activated by the lipid second messenger phosphatidyl inositol (3,4,5)-trisphosphate (PIP3), which is generated by phosphoinositide 3-kinase (PI3K), and by the Gβγ subunits of heterotrimeric G proteins, which are released upon the activation of G protein-coupled receptors (GPCRs) (Donald et al. 2004; Li et al. 2005). Studies using genetically modified mice showed that P-Rex2 controls the dendrite morphology and synaptic plasticity of cerebellar Purkinje neurons...

This is a preview of subscription content, log in to check access.



This review was funded by Institute Strategic Programme Grant BB/J004456/1 from the Biotechnology and Biological Sciences Research Council (BBSRC) to the Babraham Institute Signalling Programme. ET is funded by a CASE PhD studentship from the BBSRC in collaboration with the Cardiovascular and Metabolic Disease unit of MedImmune, Cambridge. CP is funded by a Targeted PhD studentship from the BBSRC Doctoral Training Programme.


  1. Abiko H, Fujiwara S, Ohashi K, Hiatari R, Mashiko T, Sakamoto N, et al. Rho guanine nucleotide exchange factors involved in cyclic-stretch-induced reorientation of vascular endothelial cells. J Cell Sci. 2015;128:1683–95.CrossRefPubMedGoogle Scholar
  2. Ali NA, Wu J, Hochgrafe F, Chan H, Nair R, Ye S, et al. Profiling the tyrosine phosphoproteome of different mouse mammary tumour models reveals distinct, model-specific signalling networks and conserved oncogenic pathways. Breast Cancer Res. 2014;16:437.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barber MA, Hendrickx A, Beullens M, Ceulemans H, Oxley D, Thelen S, et al. The guanine-nucleotide-exchange factor P-Rex1 is activated by protein phosphatase 1alpha. Biochem J. 2012;443:173–83.CrossRefPubMedGoogle Scholar
  4. Barrows D, Schoenfeld SM, Hodakoski C, Silkov A, Honig B, Couvillon A, et al. p21-activated kinases (PAKs) mediate the phosphorylation of PREX2 protein to initiate feedback inhibition of Rac1 GTPase. J Biol Chem. 2015;290:28915–31.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 2012;485:502–6.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chen X, Pan M, Han L, Lu H, Hao X, Dong Q. miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Letts. 2013;587:3729–37.CrossRefGoogle Scholar
  7. Donald S, Hill K, Lecureuil C, Barnouin R, Krugmann S, John Coadwell W, et al. P-Rex2, a new guanine-nucleotide exchange factor for Rac. FEBS Letts. 2004;572:172–6.CrossRefGoogle Scholar
  8. Donald S, Humby T, Fyfe I, Segonds-Pichon A, Walker SA, Andrews SR, et al. P-Rex2 regulates Purkinje cell dendrite morphology and motor coordination. Proc Natl Acad Sci USA. 2008;105:4483–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Fine B, Hodakoski C, Koujak S, Su T, Saal LH, Maurer M, et al. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-Rex2a. Science. 2009;325:1261–5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Guo B, Liu L, Yao J, Ma R, Chang D, Li Z, et al. miR-338-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a. Mol Cancer Res. 2014;12:313–21.CrossRefPubMedGoogle Scholar
  11. He S, Lin J, Yu S, Sun S. Upregulation of PREX2 promotes the proliferation and migration of hepatocellular carcinoma cells via PTEN-AKT signaling. Oncol Lett. 2016;11:2223–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Hernández-Negrete I, Carretero-Ortega J, Rosenfeldt H, Hernández-García R, Calderón-Salinas JV, Reyes-Cruz G, et al. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J Biol Chem. 2007;282:23708–15.CrossRefPubMedGoogle Scholar
  13. Hodakoski C, Hopkins BD, Barrows D, Mense SM, Keniry M, Anderson KE, et al. Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis. Proc Natl Acad Sci USA. 2014;111:155–60.CrossRefPubMedGoogle Scholar
  14. Jackson C, Welch HC, Bellamy TC. Control of cerebellar long-term potentiation by P-Rex-family guanine-nucleotide exchange factors and phosphoinositide 3-kinase. PLoS One. 2010;5:e11962.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Joseph RE, Norris FA. Substrate specificity and recognition is conferred by the pleckstrin homology domain of the Dbl family guanine nucleotide exchange factor P-Rex2. J Biol Chem. 2005;280:27508–12.CrossRefPubMedGoogle Scholar
  16. Lan X, Xiao F, Ding Q, Liu J, Liu J, Li J, et al. The effect of CXCL9 on the invasion ability of hepatocellular carcinoma through up-regulation of PREX2. J Mol Histol. 2014;45:689–96.CrossRefPubMedGoogle Scholar
  17. Lavallee VP, Gendron P, Lemieux S, D’Angelo G, Hebert J, Sauvageau G. EVI1-rearranged acute myeloid leukemias are characterized by distinct molecular alterations. Blood. 2015;125:140–3.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Li Z, Paik JH, Wang Z, Hla T, Wu D. Role of guanine nucleotide exchange factor P-Rex2b in sphingosine 1-phosphate-induced Rac1 activation and cell migration in endothelial cells. Prostaglandins Other Lipid Mediat. 2005;76:95–104.CrossRefPubMedGoogle Scholar
  19. Lissanu Deribe Y, Shi Y, Rai K, Nezi L, Amin SB, Wu CC, et al. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma. Proc Natl Acad Sci USA. 2016;113(9):E1296–305.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Mense SM, Barrows D, Hodakoski C, Steinbach N, Schoenfeld D, Su W, et al. PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion. Sci Signal. 2015;8:ra32.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Multani S, Pradhan S, Saranath D. Gene polymorphisms and oral cancer risk in tobacco habitues. Tumour Biol. 2016;37:6169–76.CrossRefPubMedGoogle Scholar
  22. Rosenfeldt H, Vazquez-Prado J, Gutkind JS. P-Rex2, a novel PI-3-kinase sensitive Rac exchange factor. FEBS Letts. 2004;572:167–71.CrossRefGoogle Scholar
  23. Tong D, Zhao L, He K, Sun H, Cai D, Ni L, et al. MECP2 promotes the growth of gastric cancer cells by suppressing miR-338-mediated antiproliferative effect. Oncotarget. 2016;7:34845–59.PubMedPubMedCentralGoogle Scholar
  24. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Welch HC. Regulation and function of P-Rex family Rac-GEFs. Small GTPases. 2015;6:1–11.CrossRefGoogle Scholar
  26. Yang J, Gong X, Ouyang L, He W, Xiao R, Tan L. PREX2 promotes the proliferation, invasion and migration of pancreatic cancer cells by modulating the PI3K signaling pathway. Oncol Lett. 2016;12:1139–43.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Elpida Tsonou
    • 1
  • Chiara Pantarelli
    • 1
  • Kirsti Hornigold
    • 1
  • Heidi C. E. Welch
    • 1
    Email author
  1. 1.Signalling ProgrammeBabraham InstituteCambridgeUK