Skip to main content

MAPK Interacting Protein Kinase 1 and 2 (Mnk1 and Mnk2)

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 133 Accesses

Synonyms

MAPK interacting serine/threonine kinase 1; MAPK interacting serine/threonine kinase 2; MKNK1; MKNK2

Historical Background

The MAPK interacting protein kinases 1 and 2 were identified as a part of a screen to identify novel proteins that can be phosphorylated by extracellular regulated kinase (Erk) (Fukunaga and Hunter 1997). This screen identified Mnk1 as an Erk2 substrate. Additionally Mnk1 was found to be phosphorylated by the p38 MAPK and the Erk kinase but not by c-Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPK) (Fukunaga and Hunter 1997). Stimulation with 12-O-tetradecanoylphorbol-13-acetate, fetal calf serum, anisomycin, UV irradiation, tumor necrosis factor-alpha, interleukin-1beta, or osmotic shock also resulted in phosphorylation of Mnk1 in an Erk and/or p38-dependent manner (Fukunaga and Hunter 1997). Another study utilizing a two-hybrid screen approach to identify novel Erk2 substrates identified Mnk1 as an Erk2 target (Waskiewicz et al. 1997)....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman JK, Glaser H, Sassano A, Joshi S, Ueda T, Watanabe-Fukunaga R, et al. Negative regulatory effects of Mnk kinases in the generation of chemotherapy-induced antileukemic responses. Mol Pharmacol. 2010;78:778–84. doi:10.1124/mol.110.064642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell JB, Eckerdt FD, Alley K, Magnusson LP, Hussain H, Bi Y, et al. MNK inhibition disrupts mesenchymal glioma stem cells and prolongs survival in a mouse model of glioblastoma. Mol Cancer Res: MCR. 2016;14:984–93. doi:10.1158/1541-7786.MCR-16-0172.

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Bryant JD, Dobrikova EY, Shveygert M, Bradrick SS, Chandramohan V, et al. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase. J Virol. 2014;88:13135–48. doi:10.1128/JVI.01883-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buxade M, Parra JL, Rousseau S, Shpiro N, Marquez R, Morrice N, et al. The Mnks are novel components in the control of TNF alpha biosynthesis and phosphorylate and regulate hnRNP A1. Immunity. 2005;23:177–89. doi:10.1016/j.immuni.2005.06.009.

    Article  CAS  PubMed  Google Scholar 

  • Buxade M, Morrice N, Krebs DL, Proud CG. The PSF.p54nrb complex is a novel Mnk substrate that binds the mRNA for tumor necrosis factor alpha. J Biol Chem. 2008;283:57–65. doi:10.1074/jbc.M705286200.

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga R, Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 1997;16:1921–33. doi:10.1093/emboj/16.8.1921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorentla BK, Krishna S, Shin J, Inoue M, Shinohara ML, Grayson JM, et al. Mnk1 and 2 are dispensable for T cell development and activation but important for the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol. 2013;190:1026–37. doi:10.4049/jimmunol.1200026.

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Yao Z, Proud CG. The C-terminal domain of Mnk1a plays a dual role in tightly regulating its activity. Biochem J. 2009;423:279–90. doi:10.1042/BJ20090228.

    Article  CAS  PubMed  Google Scholar 

  • Grund EM, Spyropoulos DD, Watson DK, Muise-Helmericks RC. Interleukins 2 and 15 regulate Ets1 expression via ERK1/2 and MNK1 in human natural killer cells. J Biol Chem. 2005;280:4772–8. doi:10.1074/jbc.M408356200.

    Article  CAS  PubMed  Google Scholar 

  • Grzmil M, Seebacher J, Hess D, Behe M, Schibli R, Moncayo G, et al. Inhibition of MNK pathways enhances cancer cell response to chemotherapy with temozolomide and targeted radionuclide therapy. Cell Signal. 2016;28:1412–21. doi:10.1016/j.cellsig.2016.06.005.

    Article  CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241:42–52.

    Article  CAS  PubMed  Google Scholar 

  • Imataka H, Olsen HS, Sonenberg N. A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 1997;16:817–25. doi:10.1093/emboj/16.4.817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jauch R, Jakel S, Netter C, Schreiter K, Aicher B, Jackle H, et al. Crystal structures of the Mnk2 kinase domain reveal an inhibitory conformation and a zinc binding site. Structure. 2005;13:1559–68. doi:10.1016/j.str.2005.07.013.

    Article  CAS  PubMed  Google Scholar 

  • Jauch R, Cho MK, Jakel S, Netter C, Schreiter K, Aicher B, et al. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment. EMBO J. 2006;25:4020–32. doi:10.1038/sj.emboj.7601285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson LN, Noble ME, Owen DJ. Active and inactive protein kinases: structural basis for regulation. Cell. 1996;85:149–58.

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Platanias LC. Mnk kinases in cytokine signaling and regulation of cytokine responses. Biomol Concepts. 2012;3:127–39. doi:10.1515/bmc-2011-0057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi S, Kaur S, Redig AJ, Goldsborough K, David K, Ueda T, et al. Type I interferon (IFN)-dependent activation of Mnk1 and its role in the generation of growth inhibitory responses. Proc Natl Acad Sci U S A. 2009;106:12097–102. doi:10.1073/pnas.0900562106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi S, Sharma B, Kaur S, Majchrzak B, Ueda T, Fukunaga R, et al. Essential role for Mnk kinases in type II interferon (IFNgamma) signaling and its suppressive effects on normal hematopoiesis. J Biol Chem. 2011;286:6017–26. doi:10.1074/jbc.M110.197921.

    Article  CAS  PubMed  Google Scholar 

  • Koromilas AE, Lazaris-Karatzas A, Sonenberg N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 1992;11:4153–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kosciuczuk EM, Saleiro D, Kroczynska B, Beauchamp EM, Eckerdt F, Blyth GT, et al. Merestinib blocks Mnk kinase activity in acute myeloid leukemia progenitors and exhibits antileukemic effects in vitro and in vivo. Blood. 2016;128:410–4. doi:10.1182/blood-2016-02-698704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwegyir-Afful AK, Bruno RD, Purushottamachar P, Murigi FN, Njar VC. Galeterone and VNPT55 disrupt Mnk-eIF4E to inhibit prostate cancer cell migration and invasion. FEBS J. 2016. doi:10.1111/febs.13895.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laan M, Lotvall J, Chung KF, Linden A. IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases. Br J Pharmacol. 2001;133:200–6. doi:10.1038/sj.bjp.0704063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Yue P, Deng X, Ueda T, Fukunaga R, Khuri FR, et al. Protein phosphatase 2A negatively regulates eukaryotic initiation factor 4E phosphorylation and eIF4F assembly through direct dephosphorylation of Mnk and eIF4E. Neoplasia. 2010;12:848–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling J, Morley SJ, Traugh JA. Inhibition of cap-dependent translation via phosphorylation of eIF4G by protein kinase Pak2. EMBO J. 2005;24:4094–105. doi:10.1038/sj.emboj.7600868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruoka S, Hashimoto S, Gon Y, Takeshita I, Horie T. PAF-induced RANTES production by human airway smooth muscle cells requires both p38 MAP kinase and Erk. Am J Respir Crit Care Med. 2000;161:922–9. doi:10.1164/ajrccm.161.3.9906059.

    Article  CAS  PubMed  Google Scholar 

  • Noubade R, Krementsov DN, Del Rio R, Thornton T, Nagaleekar V, Saligrama N, et al. Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis. Blood. 2011;118:3290–300. doi:10.1182/blood-2011-02-336552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Loghlen A, Gonzalez VM, Pineiro D, Perez-Morgado MI, Salinas M, Martin ME. Identification and molecular characterization of Mnk1b, a splice variant of human MAP kinase-interacting kinase Mnk1. Exp Cell Res. 2004;299:343–55. doi:10.1016/j.yexcr.2004.06.006.

    Article  CAS  PubMed  Google Scholar 

  • O’Loghlen A, Gonzalez VM, Jurado T, Salinas M, Martin ME. Characterization of the activity of human MAP kinase-interacting kinase Mnk1b. Biochim Biophys Acta. 2007;1773:1416–27. doi:10.1016/j.bbamcr.2007.05.009.

    Article  CAS  PubMed  Google Scholar 

  • Orton KC, Ling J, Waskiewicz AJ, Cooper JA, Merrick WC, Korneeva NL, et al. Phosphorylation of Mnk1 by caspase-activated Pak2/gamma-PAK inhibits phosphorylation and interaction of eIF4G with Mnk. J Biol Chem. 2004;279:38649–57. doi:10.1074/jbc.M407337200.

    Article  CAS  PubMed  Google Scholar 

  • Parra JL, Buxade M, Proud CG. Features of the catalytic domains and C termini of the MAPK signal-integrating kinases Mnk1 and Mnk2 determine their differing activities and regulatory properties. J Biol Chem. 2005;280:37623–33. doi:10.1074/jbc.M508356200.

    Article  CAS  PubMed  Google Scholar 

  • Parra-Palau JL, Scheper GC, Wilson ML, Proud CG. Features in the N and C termini of the MAPK-interacting kinase Mnk1 mediate its nucleocytoplasmic shuttling. J Biol Chem. 2003;278:44197–204. doi:10.1074/jbc.M302398200.

    Article  CAS  PubMed  Google Scholar 

  • Proud CG. Mnks, eIF4E phosphorylation and cancer. Biochim Biophys Acta. 2015;1849:766–73. doi:10.1016/j.bbagrm.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  • Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 1999;18:270–9. doi:10.1093/emboj/18.1.270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramalingam S, Gediya L, Kwegyir-Afful AK, Ramamurthy VP, Purushottamachar P, Mbatia H, et al. First MNKs degrading agents block phosphorylation of eIF4E, induce apoptosis, inhibit cell growth, migration and invasion in triple negative and Her2-overexpressing breast cancer cell lines. Oncotarget. 2014;5:530–43. doi:10.18632/oncotarget.1528.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowlett RM, Chrestensen CA, Nyce M, Harp MG, Pelo JW, Cominelli F, et al. MNK kinases regulate multiple TLR pathways and innate proinflammatory cytokines in macrophages. Am J Physiol Gastrointest Liver Physiol. 2008;294:G452–9. doi:10.1152/ajpgi.00077.2007.

    Article  CAS  PubMed  Google Scholar 

  • Scheper GC, Proud CG. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem. 2002;269:5350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheper GC, Morrice NA, Kleijn M, Proud CG. The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol Cell Biol. 2001;21:743–54. doi:10.1128/MCB.21.3.743-754.2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheper GC, Parra JL, Wilson M, Van Kollenburg B, Vertegaal AC, Han ZG, et al. The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization. Mol Cell Biol. 2003;23:5692–705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Y, Frost P, Hoang B, Yang Y, Fukunaga R, Gera J, et al. MNK kinases facilitate c-myc IRES activity in rapamycin-treated multiple myeloma cells. Oncogene. 2013;32:190–7. doi:10.1038/onc.2012.43.

    Article  CAS  PubMed  Google Scholar 

  • Shveygert M, Kaiser C, Bradrick SS, Gromeier M. Regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation by mitogen-activated protein kinase occurs through modulation of Mnk1-eIF4G interaction. Mol Cell Biol. 2010;30:5160–7. doi:10.1128/MCB.00448-10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slentz-Kesler K, Moore JT, Lombard M, Zhang J, Hollingsworth R, Weiner MP. Identification of the human Mnk2 gene (MKNK2) through protein interaction with estrogen receptor beta. Genomics. 2000;69:63–71. doi:10.1006/geno.2000.6299.

    Article  CAS  PubMed  Google Scholar 

  • Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ. Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP. Proc Natl Acad Sci U S A. 1979;76:4345–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol. 2004;24:6539–49. doi:10.1128/MCB.24.15.6539-6549.2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda T, Sasaki M, Elia AJ, Chio II, Hamada K, Fukunaga R, et al. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A. 2010;107:13984–90. doi:10.1073/pnas.1008136107.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Velden AW, Thomas AA. The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol. 1999;31:87–106.

    Article  PubMed  Google Scholar 

  • Wang X, Flynn A, Waskiewicz AJ, Webb BL, Vries RG, Baines IA, et al. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem. 1998;273:9373–7.

    Article  CAS  PubMed  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997;16:1909–20. doi:10.1093/emboj/16.8.1909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol. 1999;19:1871–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Joshi, S. (2018). MAPK Interacting Protein Kinase 1 and 2 (Mnk1 and Mnk2). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101722

Download citation

Publish with us

Policies and ethics