Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

MASP1 and MASP2

  • Angelica Beate Winter Boldt
  • Stefanie Epp Boschmann
  • Sandra Jeremias Catarino
  • Fabiana Antunes Andrade
  • Iara José de Messias-Reason
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101714

Synonyms

Historical Background

Ikeda and colleagues were the first to refer to MASPs, in 1987. They described MASP-1 as the activating component of the mouse bactericidal Ra-reactive factor (RaRF). RaRF circulates in plasma as a complex of mannose-binding lectin (MBL) and serine proteases, activating the complement factors C4 and C2 upon binding to lipopolysaccharides in Ra chemotype Salmonella (Gram-negative) bacteria (Ikeda et al. 1987). Five years later, Matsushita and Fujita identified MASP-1 in serum, complexed with MBL (Matsushita and Fujita 1992). Thiel et al. identified a second MASP in 1997, named MASP-2 (Thiel et al. 1997). In 2001, Dahl and colleagues designated another protease as MASP-3, due to its homology to the other MASPs. The MASP1gene encodes MASP-1, MASP-3, and a truncated...

This is a preview of subscription content, log in to check access.

References

  1. Ali YM, Lynch NJ, Haleem KS, et al. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection. PLoS Pathog. 2012;8:e1002793.  https://doi.org/10.1371/journal.ppat.1002793.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ambrus G, Gál P, Kojima M, et al. Natural substrates and inhibitors of mannan-binding lectin-associated serine protease-1 and -2: a study on recombinant catalytic fragments. J Immunol. 2003;170:1374–82.CrossRefPubMedGoogle Scholar
  3. Ameye L, Paesmans M, Thiel S, et al. M-ficolin levels are associated with the occurrence of severe infections in patients with haematological cancer undergoing chemotherapy. Clin Exp Immunol. 2012;167:303–8.  https://doi.org/10.1111/j.1365-2249.2011.04512.x.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ammitzbøll CG, Steffensen R, Jørgen Nielsen H, et al. Polymorphisms in the MASP1 gene are associated with serum levels of MASP-1, MASP-3, and MAp44. PLoS One. 2013;8:e73317.  https://doi.org/10.1371/journal.pone.0073317.CrossRefPubMedGoogle Scholar
  5. Aston KI, Carrell DT. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl. 2009;30:711–25.  https://doi.org/10.2164/jandrol.109.007971.CrossRefPubMedGoogle Scholar
  6. Atik T, Koparir A, Bademci G, et al. Novel MASP1 mutations are associated with an expanded phenotype in 3MC1 syndrome. Orphanet J Rare Dis. 2015;10:128.  https://doi.org/10.1186/s13023-015-0345-3.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Banda NK, Acharya S, Scheinman RI, et al. Mannan-binding lectin-associated serine protease 1/3 cleavage of pro-factor D into factor D in vivo and attenuation of collagen antibody-induced arthritis through their targeted inhibition by RNA interference-mediated gene silencing. J Immunol. 2016;197:3680–94.  https://doi.org/10.4049/jimmunol.1600719.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beltrame MH, Boldt ABW, Catarino SJ, et al. MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol. 2015;67:85–100.  https://doi.org/10.1016/j.molimm.2015.03.245.CrossRefPubMedGoogle Scholar
  9. Boldt ABW, Grisbach C, Steffensen R, et al. Multiplex sequence-specific polymerase chain reaction reveals new MASP2 haplotypes associated with MASP-2 and MAp19 serum levels. Hum Immunol. 2011a;72:753–60.  https://doi.org/10.1016/j.humimm.2011.05.015.CrossRefPubMedGoogle Scholar
  10. Boldt ABW, Luz PR, Messias-Reason IJT. MASP2 haplotypes are associated with high risk of cardiomyopathy in chronic Chagas disease. Clin Immunol. 2011b;140:63–70.  https://doi.org/10.1016/j.clim.2011.03.008.CrossRefPubMedGoogle Scholar
  11. Boldt A, Goeldner I, Stahlke E. Leprosy association with low MASP-2 levels generated by MASP2 haplotypes and polymorphisms flanking MAp19 exon 5. PLoS One. 2013.  https://doi.org/10.1371/journal.pone.0069054.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boldt ABW, Beltrame MH, Catarino SJ, et al. A dual role for mannan-binding lectin-associated serine protease 2 (MASP-2) in HIV infection. Mol Immunol. 2016;78:48–56.  https://doi.org/10.1016/j.molimm.2016.08.015.CrossRefPubMedGoogle Scholar
  13. Catarino SJDS, Boldt ABW, Beltrame MH, et al. Association of MASP2 polymorphisms and protein levels with rheumatic fever and rheumatic heart disease. Hum Immunol. 2014;75:1197–202.  https://doi.org/10.1016/j.humimm.2014.10.003.CrossRefPubMedGoogle Scholar
  14. Charchaflieh J, Wei J, Labaze G, et al. The role of complement system in septic shock. Clin Dev Immunol. 2012;2012:407324.  https://doi.org/10.1155/2012/407324.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen M, Liang Y, Li W, et al. Impact of MBL and MASP-2 gene polymorphism and its interaction on susceptibility to tuberculosis. BMC Infect Dis. 2015;15:151.  https://doi.org/10.1186/s12879-015-0879-y.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Christensen T, Petersen T, Thiel S, et al. Gene-environment interactions in multiple sclerosis: innate and adaptive immune responses to human endogenous retrovirus and herpesvirus antigens and the lectin complement activation pathway. J Neuroimmunol. 2007;183:175–88.  https://doi.org/10.1016/j.jneuroim.2006.09.014.CrossRefPubMedGoogle Scholar
  17. Coelho A, Brandao LA, Guimaraes RL, et al. Mannose binding lectin and mannose binding lectin-associated serine protease-2 genes polymorphisms in human T lymphotropic virus infection. J Med Virol. 2013;85:1829–35.  https://doi.org/10.1002/jmv.23656.CrossRefPubMedGoogle Scholar
  18. Cortesio CL, Jiang W. Mannan-binding lectin-associated serine protease 3 cleaves synthetic peptides and insulin-like growth factor-binding protein 5. Arch Biochem Biophys. 2006;449:164–70.  https://doi.org/10.1016/j.abb.2006.02.006.CrossRefPubMedGoogle Scholar
  19. Dahl M, Thiel S, Matsushita M, et al. MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity. 2001;15:127–35.CrossRefPubMedGoogle Scholar
  20. Davidson B, Abeler VM, Forsund M, et al. Gene expression signatures of primary and metastatic uterine leiomyosarcoma. Hum Pathol. 2014;45:691–700.  https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations.CrossRefPubMedGoogle Scholar
  21. De Maturana EL, Ye Y, Calle ML, et al. Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk. PLoS One. 2013;8:e83745.  https://doi.org/10.1371/journal.pone.0083745.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Degn SE, Hansen AG, Steffensen R, et al. MAp44, a human protein associated with pattern recognition molecules of the complement system and regulating the lectin pathway of complement activation. J Immunol. 2009;183:7371–8.  https://doi.org/10.4049/jimmunol.0902388.CrossRefPubMedGoogle Scholar
  23. Degn SE, Jensen L, Gál P, et al. Biological variations of MASP-3 and MAp44, two splice products of the MASP1 gene involved in regulation of the complement system. J Immunol Methods. 2010;361:37–50.  https://doi.org/10.1016/j.jim.2010.07.006.CrossRefPubMedGoogle Scholar
  24. Degn S, Thiel S, Nielsen O. MAp19, the alternative splice product of the MASP2 gene. J Immunol Methods. 2011a;89–101.  https://doi.org/10.1016/j.jim.2011.08.006.PubMedCrossRefGoogle Scholar
  25. Degn SE, Jensenius JC, Thiel S. Disease-causing mutations in genes of the complement system. Am J Hum Genet. 2011b;88:689–705.  https://doi.org/10.1016/j.ajhg.2011.05.011.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Degn SE, Jensen L, Hansen AG, et al. Mannan-binding lectin-associated serine protease (MASP)-1 is crucial for lectin pathway activation in human serum, whereas neither MASP-1 nor MASP-3 is required for alternative pathway function. J Immunol. 2012;189:3957–69.  https://doi.org/10.4049/jimmunol.1201736.CrossRefPubMedGoogle Scholar
  27. Degn SE, Jensen L, Olszowski T, et al. Co-complexes of MASP-1 and MASP-2 associated with the soluble pattern-recognition molecules drive lectin pathway activation in a manner inhibitable by MAp44. J Immunol. 2013a;191:1334–45.  https://doi.org/10.4049/jimmunol.1300780.CrossRefPubMedGoogle Scholar
  28. Degn SE, Thiel S, Jensenius JC. Recombinant expression of the autocatalytic complement protease MASP-1 is crucially dependent on co-expression with its inhibitor, C1 inhibitor. Protein Expr Purif. 2013b;88:173–82.  https://doi.org/10.1016/j.pep.2013.01.002.CrossRefPubMedGoogle Scholar
  29. Degn SE, Kjaer TR, Kidmose RT, et al. Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes. Proc Natl Acad Sci. 2014;111:13445–50.  https://doi.org/10.1073/pnas.1406849111.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dobó J, Major B, Kékesi KA, et al. Cleavage of Kininogen and subsequent Bradykinin release by the complement component: mannose-binding lectin-associated serine protease (MASP)-1. PLoS One. 2011;6:1–8.  https://doi.org/10.1371/journal.pone.0020036.CrossRefGoogle Scholar
  31. Dobó J, Szakács D, Oroszlán G, et al. MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked. Sci Rep. 2016;6:31877.  https://doi.org/10.1038/srep31877.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dunkelberger JR, Song W-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20:34–50.  https://doi.org/10.1038/cr.2009.139.CrossRefPubMedGoogle Scholar
  33. El Saadany SA, Ziada DH, Farrag W, Hazaa S. Fibrosis severity and mannan-binding lectin (MBL)/MBL-associated serine protease 1 (MASP-1) complex in HCV-infected patients. Arab J Gastroenterol. 2011;12:68–73.  https://doi.org/10.1016/j.ajg.2011.04.005.CrossRefPubMedGoogle Scholar
  34. Endo Y, Takahashi M, Nakao M, et al. Two lineages of mannose-binding lectin-associated serine protease (MASP) in vertebrates. J Immunol. 1998;161:4924–30.PubMedGoogle Scholar
  35. Fisch UP, Zehnder A, Hirt A, et al. Mannan-binding lectin (MBL) and MBL-associated serine protease-2 in children with cancer. Swiss Med Wkly. 2011;141:w13191.  https://doi.org/10.4414/smw.2011.13191.CrossRefPubMedGoogle Scholar
  36. Foldager L, Steffensen R, Thiel S, et al. MBL and MASP-2 concentrations in serum and MBL2 promoter polymorphisms are associated to schizophrenia. Acta Neuropsychiatr. 2012;24:199–207.  https://doi.org/10.1111/j.1601-5215.2011.00618.x.CrossRefPubMedGoogle Scholar
  37. Foldager L, Köhler O, Steffensen R, et al. Bipolar and panic disorders may be associated with hereditary defects in the innate immune system. J Affect Disord. 2014;164:148–54.  https://doi.org/10.1016/j.jad.2014.04.017.CrossRefPubMedGoogle Scholar
  38. Frauenknecht V, Thiel S, Storm L, et al. Plasma levels of mannan-binding lectin (MBL)-associated serine proteases (MASPs) and MBL-associated protein in cardio- and cerebrovascular diseases. Clin Exp Immunol. 2013;173:112–20.  https://doi.org/10.1111/cei.12093.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gál P, Dobó J, Závodszky P, Sim RBM. Early complement proteases: C1r, C1s and MASPs. A structural insight into activation and functions. Mol Immunol. 2009;46:2745–52.  https://doi.org/10.1016/j.molimm.2009.04.026.CrossRefPubMedGoogle Scholar
  40. Goeldner I, Skare T, Boldt ABW, et al. Association of MASP-2 levels and MASP2 gene polymorphisms with rheumatoid arthritis in patients and their relatives. PLoS One. 2014;9:e90979.  https://doi.org/10.1371/journal.pone.0090979.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gregory LA, Thielens NM, Matsushita M, et al. The X-ray structure of human mannan-binding lectin-associated protein 19 (MAp19) and its interaction site with mannan-binding lectin and L-ficolin. J Biol Chem. 2004;279:29391–7.  https://doi.org/10.1074/jbc.M402687200.CrossRefPubMedGoogle Scholar
  42. Gulla KC, Gupta K, Krarup A, et al. Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot. Immunology. 2010;129:482–95.  https://doi.org/10.1111/j.1365-2567.2009.03200.x.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Haerynck F, Van Steen K, Cattaert T, et al. Polymorphisms in the lectin pathway genes as a possible cause of early chronic Pseudomonas aeruginosa colonization in cystic fibrosis patients. Hum Immunol. 2012;73:1175–83.  https://doi.org/10.1016/j.humimm.2012.08.010.CrossRefPubMedGoogle Scholar
  44. Hansen CB, Csuka D, Munthe-Fog L, et al. The levels of the lectin pathway serine protease MASP-1 and its complex formation with C1 inhibitor are linked to the severity of hereditary angioedema. J Immunol. 2015;195:3596–604.  https://doi.org/10.4049/jimmunol.1402838.CrossRefPubMedGoogle Scholar
  45. Héja D, Kocsis A, Dobó J, et al. Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc Natl Acad Sci USA. 2012;109:10498–503.  https://doi.org/10.1073/pnas.1202588109.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hess K, Ajjan R, Phoenix F, et al. Effects of MASP-1 of the complement system on activation of coagulation factors and plasma clot formation. PLoS One. 2012;7:e35690.  https://doi.org/10.1371/journal.pone.0035690.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hisano S, Matsushita M, Fujita T, et al. Activation of the lectin complement pathway in post-streptococcal acute glomerulonephritis. Pathol Int. 2007;57:351–7.  https://doi.org/10.1111/j.1440-1827.2007.02107.x.CrossRefPubMedGoogle Scholar
  48. Holmberg V, Onkamo P, Lahtela E, et al. Mutations of complement lectin pathway genes MBL2 and MASP2 associated with placental malaria. Malar J. 2012;11:61.  https://doi.org/10.1186/1475-2875-11-61.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ikeda K, Sannoh T, Kawasaki N, et al. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. 1987;262:7451–4.PubMedGoogle Scholar
  50. Ingels C, Vanhorebeek I, Steffensen R, et al. Lectin pathway of complement activation and relation with clinical complications in critically ill children. Pediatr Res. 2014;75:99–108.  https://doi.org/10.1038/pr.2013.180.CrossRefPubMedGoogle Scholar
  51. Iwaki D, Kanno K, Takahashi M, et al. The role of mannose-binding lectin-associated serine protease-3 in activation of the alternative complement pathway. J Immunol. 2011;187:3751–8.  https://doi.org/10.4049/jimmunol.1100280.CrossRefPubMedGoogle Scholar
  52. Jani PK, Kajdacsi E, Megyeri M, et al. MASP-1 induces a unique cytokine pattern in endothelial cells: a novel link between complement system and neutrophil granulocytes. PLoS One. 2014;9:10–3.  https://doi.org/10.1371/journal.pone.0087104.CrossRefPubMedCentralGoogle Scholar
  53. Jenny L, Ajjan R, King R, et al. Plasma levels of mannan-binding lectin-associated serine proteases MASP-1 and MASP-2 are elevated in type 1 diabetes and correlate with glycaemic control. Clin Exp Immunol. 2015a;180:227–32.  https://doi.org/10.1111/cei.12574.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jenny L, Dobó J, Gál P, Schroeder V. MASP-1 induced clotting - the first model of prothrombin activation by MASP-1. PLoS One. 2015b;10:1–13.  https://doi.org/10.1371/journal.pone.0144633.CrossRefGoogle Scholar
  55. Ji X, Azumi K, Sasaki M, Nonaka M. Ancient origin of the complement lectin pathway revealed by molecular cloning of mannan binding protein-associated serine protease from a urochordate, the Japanese ascidian, Halocynthia roretzi. Proc Natl Acad Sci USA. 1997;94:6340–5.  https://doi.org/10.1073/pnas.94.12.6340.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kang I, Kim J, Chang S, et al. Mannan-binding lectin (MBL)-associated plasma protein present in human urine inhibits calcium oxalate crystal growth. FEBS Lett. 1999;462:89–93.CrossRefPubMedGoogle Scholar
  57. Keizer MP, Pouw RB, Kamp AM, et al. TFPI inhibits lectin pathway of complement activation by direct interaction with MASP-2. Eur J Immunol. 2015;45:544–50.  https://doi.org/10.1002/eji.201445070.CrossRefPubMedGoogle Scholar
  58. Kerr FK, Thomas AR, Wijeyewickrema LC, et al. Elucidation of the substrate specificity of the MASP-2 protease of the lectin complement pathway and identification of the enzyme as a major physiological target of the serpin, C1-inhibitor. Mol Immunol. 2008;45:670–7.  https://doi.org/10.1016/j.molimm.2007.07.008.CrossRefPubMedGoogle Scholar
  59. Kimura A, Sakaguchi E, Nonaka M. Multi-component complement system of Cnidaria: C3, Bf, and MASP genes expressed in the endodermal tissues of a sea anemone, Nematostella vectensis. Immunobiology. 2009;214:165–78.  https://doi.org/10.1016/j.imbio.2009.01.003.CrossRefPubMedGoogle Scholar
  60. Kjaer TR, Thiel S, Andersen GR. Toward a structure-based comprehension of the lectin pathway of complement. Mol Immunol. 2013;56:413–22.  https://doi.org/10.1016/j.molimm.2013.05.007.CrossRefPubMedGoogle Scholar
  61. Kjaer TR, Le LTM, Pedersen JS, et al. Structural insights into the initiating complex of the lectin pathway of complement activation. Structure. 2015;23:342–51.  https://doi.org/10.1016/j.str.2014.10.024.CrossRefPubMedGoogle Scholar
  62. Krarup A, Wallis R, Presanis JS, et al. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One. 2007;2:e623.  https://doi.org/10.1371/journal.pone.0000623.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Krarup A, Gulla KC, Gál P, et al. The action of MBL-associated serine protease 1 (MASP1) on factor XIII and fibrinogen. Biochim Biophys Acta - Proteins Proteomics. 2008;1784:1294–300.  https://doi.org/10.1016/j.bbapap.2008.03.020.CrossRefGoogle Scholar
  64. La Bonte LR, Pavlov VI, Tan YS, et al. MBL-associated serine protease -1 (MASP-1) is a significant contributor to coagulation in a murine model of occusive thrombosis. J Immunol. 2012;188:885–91.  https://doi.org/10.4049/jimmunol.1102916.MBL-Associated.CrossRefPubMedGoogle Scholar
  65. Laursen I, Thielens N, Christiansen M, Houen G. MASP interactions with plasma-derived MBL. Mol Immunol. 2012;52:79–87.  https://doi.org/10.1016/j.molimm.2012.04.014.CrossRefPubMedGoogle Scholar
  66. Liu J, Ali MAM, Shi Y, et al. Specifically binding of L-ficolin to N-glycans of HCV envelope glycoproteins E1 and E2 leads to complement activation. Cell Mol Immunol. 2009;6:235–44.  https://doi.org/10.1038/cmi.2009.32.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Matsushita M, Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med. 1992;176:1497–502.  https://doi.org/10.1084/jem.176.6.1497.CrossRefPubMedGoogle Scholar
  68. Megyeri M, Makó V, Beinrohr L, et al. Complement protease MASP-1 activates human endothelial cells: PAR4 activation is a link between complement and endothelial function. J Immunol. 2009;183:3409–16.  https://doi.org/10.4049/jimmunol.0900879.CrossRefPubMedGoogle Scholar
  69. Megyeri M, Harmat V, Major B, et al. Quantitative characterization of the activation steps of mannan-binding lectin (MBL)-associated serine proteases (MASPs) points to the central role of MASP-1 in the initiation of the complement lectin pathway. J Biol Chem. 2013;288:8922–34.  https://doi.org/10.1074/jbc.M112.446500.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Møller-Kristensen M, Jensenius JC, Jensen L, et al. Levels of mannan-binding lectin-associated serine protease-2 in healthy individuals. J Immunol Methods. 2003;282:159–67.  https://doi.org/10.1016/j.jim.2003.08.012.CrossRefPubMedGoogle Scholar
  71. Møller-Kristensen M, Thiel S, Sjöholm A, et al. Cooperation between MASP-1 and MASP-2 in the generation of C3 convertase through the MBL pathway. Int Immunol. 2007;19:141–9.  https://doi.org/10.1093/intimm/dxl131.CrossRefPubMedGoogle Scholar
  72. Nonaka M, Miyazawa S. Evolution of the initiating enzymes of the complement system. Genome Biol. 2002;3:REVIEWS1001.PubMedGoogle Scholar
  73. Oroszlán G, Kortvely E, Szakács D, et al. MASP-1 and MASP-2 do not activate pro-factor D in resting human blood, whereas MASP-3 is a potential activator: kinetic analysis involving specific MASP-1 and MASP-2 inhibitors. J Immunol. 2015;196:857–65.  https://doi.org/10.4049/jimmunol.1501717.CrossRefPubMedGoogle Scholar
  74. Pavlov VI, Skjoedt M-O, Siow Tan Y, et al. Endogenous and natural complement inhibitor attenuates myocardial injury and arterial thrombogenesis. Circulation. 2012;126:2227–35.  https://doi.org/10.1161/CIRCULATIONAHA.112.123968.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Petersen SV, Thiel S, Jensen L, et al. Control of the classical and the MBL pathway of complement activation. Mol Immunol. 2000;37:803–11.CrossRefPubMedGoogle Scholar
  76. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.  https://doi.org/10.1038/ni.1923.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rooryck C, Diaz-Font A, Osborn DPS, et al. Mutations in the lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet. 2011;43:197–203.  https://doi.org/10.1038/ng.757.Mutations.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rosbjerg A, Munthe-Fog L, Garred P, Skjoedt M-O. Heterocomplex formation between MBL/ficolin/CL-11-associated serine protease-1 and -3 and MBL/ficolin/CL-11-associated protein-1. J Immunol. 2014;192:4352–60.  https://doi.org/10.4049/jimmunol.1303263.CrossRefPubMedGoogle Scholar
  79. Saeed A, Baloch K, RJP B, et al. Mannan binding lectin-associated serine protease 1 is induced by hepatitis C virus infection and activates human hepatic stellate cells. Clin Exp Immunol. 2013;174:265–73.  https://doi.org/10.1111/cei.12174.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sato T, Endo Y, Matsushita M, Fujita T. Molecular characterization of a novel serine protease involved in activation of the complement system by mannose-binding protein. Int Immunol. 1994;6:665–9.CrossRefPubMedGoogle Scholar
  81. Schlapbach LJ, Aebi C, Otth M, et al. Deficiency of mannose-binding lectin-associated serine protease-2 associated with increased risk of fever and neutropenia in pediatric cancer patients. Pediatr Infect Dis J. 2007;26:989–94.  https://doi.org/10.1097/INF.0b013e31811ffe6a.CrossRefPubMedGoogle Scholar
  82. Sirmaci A, Walsh T, Akay H, et al. MASP1 mutations in patients with facial, umbilical, coccygeal, and auditory findings of carnevale, malpuech, OSA, and michels syndromes. Am J Hum Genet. 2010;87:679–86.  https://doi.org/10.1016/j.ajhg.2010.09.018.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Skjoedt MO, Hummelshoj T, Palarasah Y, et al. A novel mannose-binding lectin/ficolin-associated protein is highly expressed in heart and skeletal muscle tissues and inhibits complement activation. J Biol Chem. 2010a;285:8234–43.  https://doi.org/10.1074/jbc.M109.065805.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Skjoedt MO, Palarasah Y, Munthe-Fog L, et al. MBL-associated serine protease-3 circulates in high serum concentrations predominantly in complex with Ficolin-3 and regulates Ficolin-3 mediated complement activation. Immunobiology. 2010b;215:921–31.  https://doi.org/10.1016/j.imbio.2009.10.006.CrossRefPubMedGoogle Scholar
  85. Skjoedt MO, Roversi P, Hummelshøj T, et al. Crystal structure and functional characterization of the complement regulator mannose-binding lectin (MBL)/ficolin-associated protein-1 (MAP-1). J Biol Chem. 2012;287:32913–21.  https://doi.org/10.1074/jbc.M112.386680.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sokolowska A, Szala A, St Swierzko A, et al. Mannan-binding lectin-associated serine protease-2 (MASP-2) deficiency in two patients with pulmonary tuberculosis and one healthy control. Cell Mol Immunol. 2015;12:119–21.  https://doi.org/10.1038/cmi.2014.19.CrossRefPubMedGoogle Scholar
  87. Sørensen R, Thiel S, Jensenius JC, Sorensen R. Mannan-binding-lectin-associated serine proteases, characteristics and disease associations. Springer Semin Immunopathol. 2005;27:299–319.  https://doi.org/10.1007/s00281-005-0006-z.CrossRefPubMedGoogle Scholar
  88. Stengaard-Pedersen K, Thiel S, Gadjeva M, et al. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med. 2003;349:554–60.  https://doi.org/10.1056/NEJMoa022836.CrossRefPubMedGoogle Scholar
  89. Stover CM, Thiel S, Lynch NJ, Schwaeble WJ. The rat and mouse homologues of MASP-2 and MAp19, components of the lectin activation pathway of complement. J Immunol. 1999a;163:6848–59.PubMedGoogle Scholar
  90. Stover CM, Thiel S, Thelen M, et al. Two constituents of the initiation complex of the mannan-binding lectin activation pathway of complement are encoded by a single structural gene. J Immunol. 1999b;162:3481–90.PubMedGoogle Scholar
  91. Takada F, Takayama Y, Hatsuse H, Kawakami M. A new member of the C1s family of complement proteins found in a bactericidal factor, Ra-reactive factor, in human serum. Biochem Biophys Res Commun. 1993;196:1003–9.  https://doi.org/10.1006/bbrc.1993.2349.CrossRefPubMedGoogle Scholar
  92. Takada F, Seki N, Matsuda Y, et al. Localization of the genes for the 100-kDa complement-activating components of Ra-reactive factor (CRARF and Crarf) to human 3q27-q28 and mouse 16B2-B3. Genomics. 1995;25:757–9.CrossRefPubMedGoogle Scholar
  93. Takahashi M, Endo Y, Fujita T, Matsushita M. A truncated form of mannose-binding lectin-associated serine protease (MASP)-2 expressed by alternative polyadenylation is a component of the lectin complement pathway. Int Immunol. 1999;11:859–63.CrossRefPubMedGoogle Scholar
  94. Thiel S. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol Immunol. 2007;44:3875–88.  https://doi.org/10.1016/j.molimm.2007.06.005.CrossRefPubMedGoogle Scholar
  95. Thiel S, Vorup-Jensen T, Stover CM, et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 1997;386:506–10.CrossRefPubMedGoogle Scholar
  96. Thiel S, Steffensen R, Christensen IJ, et al. Deficiency of mannan-binding lectin associated serine protease-2 due to missense polymorphisms. Genes Immun. 2007;8:154–63.  https://doi.org/10.1038/sj.gene.6364373.CrossRefPubMedGoogle Scholar
  97. Thiel S, Kolev M, Degn S, et al. Polymorphisms in mannan-binding lectin (MBL)-associated serine protease 2 affect stability, binding to MBL, and enzymatic activity. J Immunol. 2009;182:2939–47.  https://doi.org/10.1016/j.molimm.2008.08.126.CrossRefPubMedGoogle Scholar
  98. Thiel S, Jensen L, Degn SE, et al. Mannan-binding lectin (MBL)-associated serine protease-1 (MASP-1), a serine protease associated with humoral pattern-recognition molecules: normal and acute-phase levels in serum and stoichiometry of lectin pathway components. Clin Exp Immunol. 2012;169:38–48.  https://doi.org/10.1111/j.1365-2249.2012.04584.x.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Troldborg A, Thiel S, Laska MJ, et al. Levels in plasma of the serine proteases and associated proteins of the lectin pathway are altered in patients with systemic lupus erythematosus. J Rheumatol. 2015;42:948–51.  https://doi.org/10.3899/jrheum.141163.CrossRefPubMedGoogle Scholar
  100. Tulio S, Faucz FR, Werneck RI, et al. MASP2 gene polymorphism is associated with susceptibility to hepatitis C virus infection. Hum Immunol. 2011;72:912–5.  https://doi.org/10.1016/j.humimm.2011.06.016.CrossRefPubMedGoogle Scholar
  101. Unterberger C, Hanson S, Klingenhoff A, et al. Stat3 is involved in control of MASP2 gene expression. Biochem Biophys Res Commun. 2007;364:1022–5.CrossRefPubMedGoogle Scholar
  102. Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344:1058–66.CrossRefGoogle Scholar
  103. Yongqing T, Drentin N, Duncan RC, et al. Mannose-binding lectin serine proteases and associated proteins of the lectin pathway of complement: two genes, five proteins and many functions? Biochim Biophys Acta - Proteins Proteomics. 2012;1824:253–62.  https://doi.org/10.1016/j.bbapap.2011.05.021.CrossRefGoogle Scholar
  104. Yongqing T, Wilmann PG, Reeve SB, et al. The x-ray crystal structure of mannose-binding lectin-associated serine proteinase-3 reveals the structural basis for enzyme inactivity associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome. J Biol Chem. 2013;288:22399–407.  https://doi.org/10.1074/jbc.M113.483875.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Ytting H, Christensen IJ, Thiel S, et al. Biological variation in circulating levels of mannan-binding lectin (MBL) and MBL-associated serine protease-2 and the influence of age, gender and physical exercise. Scand J Immunol. 2007;66:458–64.  https://doi.org/10.1111/j.1365-3083.2007.01991.x.CrossRefPubMedGoogle Scholar
  106. Ytting H, Christensen IJ, Thiel S, et al. Pre- and postoperative levels in serum of mannan-binding lectin associated serine protease-2 -a prognostic marker in colorectal cancer. Hum Immunol. 2008;69:414–20.  https://doi.org/10.1016/j.humimm.2008.05.005.CrossRefPubMedGoogle Scholar
  107. Zundel S, Cseh S, Lacroix M, et al. Characterization of recombinant mannan-binding lectin-associated serine protease (MASP)-3 suggests an activation mechanism different from that of MASP-1 and MASP-2. J Immunol. 2004;172:4342–50.  https://doi.org/10.4049/jimmunol.172.7.4342.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Angelica Beate Winter Boldt
    • 1
  • Stefanie Epp Boschmann
    • 2
  • Sandra Jeremias Catarino
    • 2
  • Fabiana Antunes Andrade
    • 2
  • Iara José de Messias-Reason
    • 2
  1. 1.Department of GeneticsUniversidade Federal do Paraná (UFPR)CuritibaBrazil
  2. 2.Department of Clinical Pathology, Hospital de ClínicasUniversidade Federal do Paraná (UFPR)CuritibaBrazil