Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Retinal Guanylyl Cyclase-Activating Protein 1 and 2

  • James B. AmesEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101702


Historical Background

Retinal guanylyl cyclases (RetGCs) in retinal rod and cone photoreceptors are regulated by a family of EF-hand Ca2+ sensor proteins called guanylyl cyclase-activating proteins (GCAP1-8) that belong to the neuronal calcium sensor (NCS) family. Mammalian GCAPs (GCAP1 and GCAP2) activate RetGCs at low Ca2+ levels in light-activated photoreceptor cells and inhibit RetGC activity at higher Ca2+ levels in dark-adapted photoreceptors. The Ca2+-sensitive RetGC activity controlled by GCAPs is an important mechanism of visual recovery and light adaptation of phototransduction. Mutations in either RetGCs or GCAPs that disable this Ca2+-sensitive cyclase activity are genetically linked to retinal disease. Here I review atomic-level structures of GCAP1 in both Ca2+-free/Mg2+-bound (activator) and Ca2+-saturated...

This is a preview of subscription content, log in to check access.


  1. Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. Molecular mechanics of calcium-myristoyl switches. Nature. 1997;389(6647):198–202.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ames JB, Dizhoor AM, Ikura M, Palczewski K, Stryer L. Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J Biol Chem. 1999;274(27):19329–37.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Burns ME, Baylor DA. Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci. 2002;24:779–805.CrossRefGoogle Scholar
  4. Dizhoor AM, Lowe DG, Olsevskaya EV, Laura RP, Hurley JB. The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron. 1994;12(6):1345–52.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, et al. Cloning, sequencing and expression of a 24-kDa Ca2+-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem. 1995;270:25200–6.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan R, Koch KW, Sharma RK. The calcium-sensor guanylate cyclase activating protein type 2 specific site in rod outer segment membrane guanylate cyclase type 1. Biochemistry. 2005;44(19):7336–45.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Jiang L, Baehr W. GCAP1 mutations associated with autosomal dominant cone dystrophy. Adv Exp Med Biol. 2010;664:273–82.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Koch KW, Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature. 1988;334(6177):64–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Lim S, Peshenko IV, Olshevskaya EV, Dizhoor AM, Ames JB. Structure of guanylyl cyclase activator protein 1 (GCAP1) mutant V77E in a Ca2+-free/Mg2+-bound activator state. J Biol Chem. 2016;291(9):4429–41.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, et al. Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA. 1995;6(12):5535–9.CrossRefGoogle Scholar
  11. Margetic A, Nannemann D, Meiler J, Huster D, Theisgen S. Guanylate cyclase-activating protein-2 undergoes structural changes upon binding to detergent micelles and bicelles. Biochim Biophys Acta. 2014;1838(11):2767–77.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Olshevskaya EV, Ermilov AN, Dizhoor AM (1999) Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J Biol Chem. 274:25583–87.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, et al. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron. 1994;13(2):395–404.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, et al. A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet. 1998;7:273–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Pugh EN, Duda T, Sitaramayya A, Sharma RK. Photoreceptor guanylate cyclases: a review. Biosci Rep. 1997;17(5):429–73.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Stephen R, Bereta G, Golczak M, Palczewski K, Sousa MC. Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. Structure. 2007;15(11):1392–402.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Theisgen S, Thomas L, Schroder T, Lange C, Kovermann M, Balbach J, et al. The presence of membranes or micelles induces structural changes of the myristoylated guanylate-cyclase activating protein-2. Eur Biophys J. 2011;40(4):565–76.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Wilkie SE, Li Y, Deery EC, Newbold RJ, Garibaldi D, Bateman JB, et al. Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am J Hum Genet. 2001;69(3):471–80.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California at DavisDavisUSA