Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Yi-Ju Wu
  • Bor-Sheng Ko
  • Jun-Yang LiouEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101693
This is a preview of subscription content, log in to check access.


  1. Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 2003;11:11–23.CrossRefPubMedGoogle Scholar
  2. Boston P, Jackson P. Purification and properties of a brain-specific protein, human 14-3-3 protein. Biochem Soc Trans. 1980;8:617–8.CrossRefPubMedGoogle Scholar
  3. Chang TC, Liu CC, Hsing EW, Liang SM, Chi YH, Sung LY, et al. 14-3-3sigma regulates beta-catenin-mediated mouse embryonic stem cell proliferation by sequestering GSK-3beta. PLoS One. 2012;7:29.CrossRefGoogle Scholar
  4. Chiang CW, Kanies C, Kim KW, Fang WB, Parkhurst C, Xie M, et al. Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Mol Cell Biol. 2003;23:6350–62.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Dar A, Wu D, Lee N, Shibata E, Dutta A. 14-3-3 proteins play a role in the cell cycle by shielding cdt2 from ubiquitin-mediated degradation. Mol Cell Biol. 2014;34:4049–61.  https://doi.org/10.1128/MCB.00838-14.CrossRefPubMedPubMedCentralGoogle Scholar
  6. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008;22:239–51.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Esteve PO, Zhang G, Ponnaluri VK, Deepti K, Chin HG, Dai N, et al. Binding of 14-3-3 reader proteins to phosphorylated DNMT1 facilitates aberrant DNA methylation and gene expression. Nucleic Acids Res. 2016;44:1642–56.  https://doi.org/10.1093/nar/gkv1162.CrossRefPubMedGoogle Scholar
  8. Freed E, Symons M, Macdonald SG, McCormick F, Ruggieri R. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science. 1994;265:1713–6.CrossRefPubMedGoogle Scholar
  9. Hou Z, Peng H, White DE, Wang P, Lieberman PM, Halazonetis T, et al. 14-3-3 binding sites in the snail protein are essential for snail-mediated transcriptional repression and epithelial-mesenchymal differentiation. Cancer Res. 2010;70:4385–93.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Inaba T, Schnell DJ. Protein trafficking to plastids: one theme, many variations. Biochem J. 2008;413:15–28.  https://doi.org/10.1042/BJ20080490.CrossRefPubMedGoogle Scholar
  11. Lee JA, Park JE, Lee DH, Park SG, Myung PK, Park BC, et al. G1 to S phase transition protein 1 induces apoptosis signal-regulating kinase 1 activation by dissociating 14-3-3 from ASK1. Oncogene. 2008;27:1297–305.  https://doi.org/10.1038/sj.onc.1210740.CrossRefPubMedGoogle Scholar
  12. Legate KR, Fassler R. Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J Cell Sci. 2009;122:187–98.CrossRefPubMedGoogle Scholar
  13. Li X, Wang QJ, Pan N, Lee S, Zhao Y, Chait BT, et al. Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson’s disease. PLoS One. 2011;6:0017153.CrossRefGoogle Scholar
  14. Martin M, Kettmann R, Dequiedt F. Class IIa histone deacetylases: regulating the regulators. Oncogene. 2007;26:5450–67.  https://doi.org/10.1038/sj.onc.1210613.CrossRefPubMedGoogle Scholar
  15. Meller N, Liu YC, Collins TL, Bonnefoy-Berard N, Baier G, Isakov N, et al. Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function. Mol Cell Biol. 1996;16:5782–91.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Moeller HB, Slengerik-Hansen J, Aroankins T, Assentoft M, MacAulay N, Moestrup SK, et al. Regulation of the water channel aquaporin-2 via 14-3-3theta and -zeta. J Biol Chem. 2016;291:2469–84.CrossRefPubMedGoogle Scholar
  17. Nichols RJ, Dzamko N, Morrice NA, Campbell DG, Deak M, Ordureau A, et al. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem J. 2010;430:393–404.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Obsilova V, Nedbalkova E, Silhan J, Boura E, Herman P, Vecer J, et al. The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase. Biochemistry. 2008;47:1768–77.  https://doi.org/10.1021/bi7019468.CrossRefPubMedGoogle Scholar
  19. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997;277:1501–5.CrossRefPubMedGoogle Scholar
  20. Rajan S, Preisig-Muller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, et al. Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol. 2002;545:13–26.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Riou P, Kjaer S, Garg R, Purkiss A, George R, Cain RJ, et al. 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins. Cell. 2013;153:640–53.  https://doi.org/10.1016/j.cell.2013.03.044.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Singh A, Ye M, Bucur O, Zhu S, Tanya Santos M, Rabinovitz I, et al. Protein phosphatase 2A reactivates FOXO3a through a dynamic interplay with 14-3-3 and AKT. Mol Biol Cell. 2010;21:1140–52.  https://doi.org/10.1091/mbc.E09-09-0795.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18:189–218.  https://doi.org/10.1038/sj.leu.2403241.CrossRefPubMedGoogle Scholar
  24. Steinacker P, Aitken A, Otto M. 14-3-3 proteins in neurodegeneration. Semin Cell Dev Biol. 2011;22:696–704.CrossRefPubMedGoogle Scholar
  25. Takala H, Nurminen E, Nurmi SM, Aatonen M, Strandin T, Takatalo M, et al. Beta2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding. Blood. 2008;112:1853–62.CrossRefPubMedGoogle Scholar
  26. Tian Q, Feetham MC, Tao WA, He XC, Li L, Aebersold R, et al. Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci USA. 2004;101:15370–5.  https://doi.org/10.1073/pnas.0406499101.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, et al. 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet. 2003;34:274–85.CrossRefPubMedGoogle Scholar
  28. Tzivion G, Gupta VS, Kaplun L, Balan V. 14-3-3 proteins as potential oncogenes. Semin Cancer Biol. 2006;16:203–13.CrossRefPubMedGoogle Scholar
  29. Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat Cell Biol. 2005;7:278–85.  https://doi.org/10.1038/ncb1228.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
  2. 2.Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan