Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Hepatocyte Growth Factor Receptor

  • Simona Gallo
  • Paolo Maria Comoglio
  • Tiziana Crepaldi
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101684


 AUTS9;  c-MET;  DFNB97;  HGFR;  MET;  RCCP2

Historical Background

In the mid-1970s, Harold Varmus and Michael Bishop began the hunting for cancer genes in the cell genome. They provided evidence that the viral v-Src gene from avian sarcoma virus was taken up by the virus from host cells and incorporated in its genome. The v-Src was transforming since it encoded for a mutated tyrosine kinase protein. Like v-Src, oncogenes are mutant-activated versions of normal cellular genes, called “proto-oncogenes.” Harold Varmus and Michael Bishop’s theory of carcinogenesis explained how chemicals, X-rays, or other DNA injuries activated such endogenous proto-oncogenes, thus initiating cancer. The MET proto-oncogene was originally identified in 1984 in George Vande Woude’s lab, after a shiny decade of discoveries of cancer-causing genes. The treatment of a human osteogenic sarcoma cell line with a chemical carcinogen induced a chromosomal translocation of the TPR (translocated promoter...
This is a preview of subscription content, log in to check access.


  1. Akimoto M, Baba A, Ikeda-Matsuo Y, Yamada MK, Itamura R, Nishiyama N, et al. Hepatocyte growth factor as an enhancer of nmda currents and synaptic plasticity in the hippocampus. Neuroscience. 2004;128(1):155–62.PubMedGoogle Scholar
  2. Bardelli A, Basile ML, Audero E, Giordano S, Wennström S, Ménard S, et al. Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis. Oncogene. 1999;18(5):1139–46.PubMedGoogle Scholar
  3. Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013;3(6):658–73.PubMedPubMedCentralGoogle Scholar
  4. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.PubMedPubMedCentralGoogle Scholar
  5. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376(6543):768–71.PubMedGoogle Scholar
  6. Boccaccio C, Sabatino G, Medico E, Girolami F, Follenzi A, Reato G, et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature. 2005;434(7031):396–400.PubMedGoogle Scholar
  7. Boccaccio C, Comoglio PM. MET, a driver of invasive growth and cancer clonal evolution under therapeutic pressure. Curr Opin Cell Biol. 2014;31:98–105.PubMedGoogle Scholar
  8. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–4.PubMedGoogle Scholar
  9. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol. 1992;119(3):629–41.PubMedGoogle Scholar
  10. Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A. 2006;103(45):16834–9.PubMedPubMedCentralGoogle Scholar
  11. Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–16.PubMedGoogle Scholar
  12. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.PubMedGoogle Scholar
  13. Corso S, Giordano S. Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer Discov. 2013;3(9):978–92.PubMedGoogle Scholar
  14. Gaudino G, Follenzi A, Naldini L, Collesi C, Santoro M, Gallo KA, et al. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J. 1994;13(15):3524–32.PubMedPubMedCentralGoogle Scholar
  15. Giacobini P, Messina A, Wray S, Giampietro C, Crepaldi T, Carmeliet P, et al. Hepatocyte growth factor acts as a motogen and guidance signal for gonadotropin hormone-releasing hormone-1 neuronal migration. J Neurosci. 2007;27(2):431–45.PubMedGoogle Scholar
  16. Ieraci A, Forni PE, Ponzetto C. Viable hypomorphic signaling mutant of the Met receptor reveals a role for hepatocyte growth factor in postnatal cerebellar development. Proc Natl Acad Sci U S A. 2002;99(23):15200–5.PubMedPubMedCentralGoogle Scholar
  17. Kato T, Funakoshi H, Kadoyama K, Noma S, Kanai M, Ohya-Shimada W, et al. Hepatocyte growth factor overexpression in the nervous system enhances learning and memory performance in mice. J Neurosci Res. 2012;90(9):1743–55.PubMedGoogle Scholar
  18. Maina F, Casagranda F, Audero E, Simeone A, Comoglio PM, Klein R, et al. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell. 1996;87(3):531–42.PubMedGoogle Scholar
  19. Maina F, Klein R. Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci. 1999;2(3):213–7.PubMedGoogle Scholar
  20. Matsumoto K, Funakoshi HT, Takahashi H, Sakai K. HGF–met pathway in regeneration and drug discovery. Biomedicine. 2014;2(4):275–300.Google Scholar
  21. Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell. 1991;67(5):901–8.PubMedGoogle Scholar
  22. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342(6248):440–3.PubMedGoogle Scholar
  23. Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK, et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene. 1991a;6(4):501–4.PubMedGoogle Scholar
  24. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 1991b;10(10):2867–78.PubMedPubMedCentralGoogle Scholar
  25. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the Met protooncogene. Cancer Cell. 2003;3(4):347–61.PubMedGoogle Scholar
  26. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.PubMedGoogle Scholar
  27. Powell EM, Mars WM, Levitt P. Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron. 2001;30(1):79–89.PubMedGoogle Scholar
  28. Qiu S, Anderson CT, Levitt P, Shepherd GM. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase. J Neurosci. 2011;31(15):5855–64.PubMedPubMedCentralGoogle Scholar
  29. Qiu S, Lu Z, Levitt P. MET receptor tyrosine kinase controls dendritic complexity, spine morphogenesis, and glutamatergic synapse maturation in the hippocampus. J Neurosci. 2014;34(49):16166–79.PubMedPubMedCentralGoogle Scholar
  30. Sachs M, Brohmann H, Zechner D, Müller T, Hülsken J, Walther I, et al. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol. 2000;150(6):1375–84.PubMedPubMedCentralGoogle Scholar
  31. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373(6516):699–702.PubMedGoogle Scholar
  32. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.PubMedGoogle Scholar
  33. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell. 1999;99(1):71–80.PubMedGoogle Scholar
  34. Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer. 2002;2(4):289–300.PubMedGoogle Scholar
  35. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11(12):834–48.PubMedGoogle Scholar
  36. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373(6516):702–5.PubMedGoogle Scholar
  37. Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature. 1996;384(6605):173–6.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Simona Gallo
    • 1
    • 2
  • Paolo Maria Comoglio
    • 2
  • Tiziana Crepaldi
    • 1
    • 2
  1. 1.Department of OncologyUniversity of TurinCandiolo, TurinItaly
  2. 2.Candiolo Cancer Institute - IRCCSCandiolo, TurinItaly