Skip to main content

MORG1 (Mitogen-Activated Protein Kinase Organizer 1)

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 56 Accesses

Synonyms

WDR83; WD repeat domain 83

Historical Background

Mitogen-activated protein kinase organizer 1 (MORG1), also known as WDR83, is a member of the WD-40 domain protein family (Vomastek et al. 2004). The WD-40 domain exhibits a β-propeller architecture and is one of the most abundant domains and also among the top interacting domains in eukaryotic genomes (Xu and Min 2011). The WD-40 domain proteins function as an adaptor in many different protein complexes or protein-DNA complexes in very diverse cellular processes (Xu and Min 2011). Analysis of the mouse cDNA sequence showed that MORG1 is a protein of 315 amino acids composed almost entirely of seven WD-40 domains with a molecular mass of 34.5 kDa (Fig. 1) (Vomastek et al. 2004). Mammalian MORG1 shares >50% amino acid sequence identity with proteins of Drosophila melanogaster and Caenorhabditis elegans and is ubiquitously expressed, with abundant amounts in the heart, brain, liver, kidney, and testis (Vomastek et al. 2004). When...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boggiatto PM, Martinez PA, Pullikuth A, Jones DE, Bellaire B, Catling A, Petersen C. Targeted extracellular signal-regulated kinase activation mediated by Leishmania amazonensis requires MP1 scaffold. Microbes Infect/Institut Pasteur. 2014;16(4):328–36 .PubMed PMID: 24463270. Pubmed Central PMCID: 4023638

    Article  CAS  Google Scholar 

  • Bondeva T, Heinzig J, Franke S, Wolf G. Angiotensin II differentially regulates Morg1 expression in kidney cells. Am J Nephrol. 2012;35(5):442–55.

    Article  CAS  PubMed  Google Scholar 

  • Bondeva T, Heinzig J, Ruhe C, Wolf G. Advanced glycated end-products affect HIF-transcriptional activity in renal cells. Mol Endocrinol. 2013;27(11):1918–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haase D, Keiner S, Mawrin C, Wolf G. Reduced Morg1 expression in ischemic human brain. Neurosci Lett. 2009;455(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt E, Loeffler I, Wolf G. Morg1 heterozygous mice are protected from acute renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2009;297(5):F1273–87.

    Article  CAS  PubMed  Google Scholar 

  • Hayase J, Kamakura S, Iwakiri Y, Yamaguchi Y, Izaki T, Ito T, Sumimoto H. The WD40 protein Morg1 facilitates Par6-aPKC binding to Crb3 for apical identity in epithelial cells. J Cell Biol. 2013;200(5):635–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hegele A, Kamburov A, Grossmann A, Sourlis C, Wowro S, Weimann M, Will CL, Pena V, Luhrmann R, Stelzl U. Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell. 2012;45(4):567–80.

    Article  CAS  PubMed  Google Scholar 

  • Hopfer U, Hopfer H, Jablonski K, Stahl RA, Wolf G. The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3). J Biol Chem. 2006;281(13):8645–55.

    Article  CAS  PubMed  Google Scholar 

  • Loeffler I, Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells. 2015a;4(4):631–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loeffler I, Wolf G. Morg1 heterozygous deficiency ameliorates hypoxia-induced acute renal injury. Am J Physiol Renal Physiol. 2015b;308(6):F511–21.

    Article  CAS  PubMed  Google Scholar 

  • Loeffler I, Wolf G. The role of hypoxia and Morg1 in renal injury. Eur J Clin Investig. 2015c;45(3):294–302.

    Article  CAS  Google Scholar 

  • Lyon SM, Waggoner D, Halbach S, Thorland EC, Khorasani L, Reid RR. Syndromic craniosynostosis associated with microdeletion of chromosome 19p13.12-19p13.2. Genes Dis. 2015;2(4):347–52. PubMed PMID: 26966713. Pubmed Central PMCID: 4782977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science. 1998;281(5383):1668–71.

    Article  CAS  PubMed  Google Scholar 

  • Stahr A, Frahm C, Kretz A, Bondeva T, Witte OW, Wolf G. Morg1(+/−) heterozygous mice are protected from experimentally induced focal cerebral ischemia. Brain Res. 2012;1482:22–31.

    Article  CAS  PubMed  Google Scholar 

  • Su WY, Xiong H, Fang JY. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem Biophys Res Commun. 2010;396(2):177–81.

    Article  CAS  PubMed  Google Scholar 

  • Su WY, Li JT, Cui Y, Hong J, Du W, Wang YC, Lin YW, Xiong H, Wang JL, Kong X, Gao QY, Wei LP, Fang JY. Bidirectional regulation between WDR83 and its natural antisense transcript DHPS in gastric cancer. Cell Res. 2012;22(9):1374–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teis D, Taub N, Kurzbauer R, Hilber D, de Araujo ME, Erlacher M, Offterdinger M, Villunger A, Geley S, Bohn G, Klein C, Hess MW, Huber LA. p14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J Cell Biol. 2006;175(6):861–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vomastek T, Schaeffer HJ, Tarcsafalvi A, Smolkin ME, Bissonette EA, Weber MJ. Modular construction of a signaling scaffold: MORG1 interacts with components of the ERK cascade and links ERK signaling to specific agonists. Proc Natl Acad Sci U S A. 2004;101(18):6981–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell. 2011;2(3):202–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zambonelli P, Davoli R, Bigi M, Braglia S, De Paolis LF, Buttazzoni L, Gallo M, Russo V. SNPs detection in DHPS-WDR83 overlapping genes mapping on porcine chromosome 2 in a QTL region for meat pH. BMC Genet. 2013;14(99).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Wang LS, Xu Y, Xia L, Chen WL, Zheng Y, Chen GQ. Comparative proteomic analysis of human leukemic cells with and without inducible expression of leukemogenic AML1-ETO protein. Chinese J Physiol. 2006;49(4):182–91.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivonne Loeffler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Loeffler, I., Wolf, G. (2018). MORG1 (Mitogen-Activated Protein Kinase Organizer 1). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101683

Download citation

Publish with us

Policies and ethics