Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Yuan-Chen Tsai
  • Shiva K. TyagarajanEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101672


 Geph;  Gphn;  KIAA1385

Synapse and Gephyrin

Large size and polarity of neuronal cell make spatiotemporal segregation of biochemical reactions and signal transduction pathways very important. In addition to the membrane-enclosed organelles, neurons also contain specialized apparatus called synapses for effective communication within the system. The presynaptic terminals containing the relevant neurotransmitter vesicles are opposed by the concomitant receptors for effective signal transduction. Information receiving, interpretation, and storage are facilitated by a resident sub-membranous protein-rich compartment. Such protein-rich compartments are referred to as postsynaptic densities (PSD), which can be a few hundred nanometers in width and ~30 to 50 nm in thickness (Chen et al. 2008).

Since the identification of inhibitory glycine receptor (GlyR) from rat spinal cord, gephyrin has assumed a central role in our current understanding of inhibitory postsynaptic organization and...

This is a preview of subscription content, log in to check access.


  1. Bechade C, Colin I, Kirsch J, Betz H, Triller A. Expression of glycine receptor α subunits and gephyrin in cultured spinal neurons. Eur J Neurosci. Blackwell Publishing Ltd1996;8(2):429–35.PubMedCrossRefGoogle Scholar
  2. Beuter S, Ardi Z, Horovitz O, Wuchter J, Keller S, Saha R, et al. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Sci Rep. 2016;6:29710.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Brünig I, Penschuck S, Berninger B, Benson JA, Fritschy JM. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAA receptor surface expression. Eur J Neurosci [Internet]. 2001;7(7):1320–8 .Available from: http://dx.doi.org/10.1046/j.0953-816x.2001.01506.xPubMedCrossRefGoogle Scholar
  4. Chen X, Winters C, Azzam R, Li X, Galbraith JA, Leapman RD, et al. Organization of the core structure of the postsynaptic density. Proc Natl Acad Sci. 2008;105(11):4453–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Choquet D, Triller A. The dynamic synapse. Neuron. 2013;80(3):691–703.PubMedCrossRefGoogle Scholar
  6. Dejanovic B, Schwarz G. Neuronal nitric oxide synthase-dependent S-nitrosylation of gephyrin regulates gephyrin clustering at GABAergic synapses. J Neurosci. 2014;34(23):7763–8.PubMedCrossRefGoogle Scholar
  7. Dejanovic B, Semtner M, Ebert S, Lamkemeyer T, Neuser F, Lüscher B, et al. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol. 2014;12(7):e1001908.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Dejanovic B, Djémié T, Grünewald N, Suls A, Kress V, Hetsch F, et al. Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy. EMBO Mol Med. 2015;7(12):1580–94.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, Betz H, et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science. 1998;282(5392):1321–4.CrossRefPubMedGoogle Scholar
  10. Förstera B, Belaidi AA, Jüttner R, Bernert C, Tsokos M, Lehmann T-N, et al. Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain. 2010;133(Pt 12):3778–94.PubMedCrossRefGoogle Scholar
  11. Fossati M, Pizzarelli R, Schmidt ER, Kupferman JV, Stroebel D, Polleux F, et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron. 2016;91(2):356–69.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Fritschy J-M, Harvey RJ, Schwarz G. Gephyrin: where do we stand, where do we go? Trends Neurosci. 2008;31(5):257–64.PubMedCrossRefGoogle Scholar
  13. Ghosh H, Auguadri L, Battaglia S, Simone Thirouin Z, Zemoura K, Messner S, Acuña MA, Wildner H, Yévenes GE, Dieter A, Kawasaki H, O Hottiger M, Zeilhofer HU, Fritschy JM, Tyagarajan SK. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nat Commun. 2016;7:13365.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Giannone G, Mondin M, Grillo-Bosch D, Tessier B, Saint-Michel E, Czöndör K, et al. Neurexin-1β binding to neuroligin-1 triggers the preferential recruitment of PSD-95 versus gephyrin through tyrosine phosphorylation of neuroligin-1. Cell Rep. 2013;3(6):1996–2007.PubMedCrossRefGoogle Scholar
  15. Grosskreutz Y, Betz H, Kneussel M. Rescue of molybdenum cofactor biosynthesis in gephyrin-deficient mice by a Cnx1 transgene. Biochem Biophys Res Commun. 2003;301(2):450–5.PubMedCrossRefGoogle Scholar
  16. Iijima T, Wu K, Witte H, Hanno-Iijima Y, Glatter T, Richard S, et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell. 2011;147(7):1601–14.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Iijima T, Iijima Y, Witte H, Scheiffele P. Neuronal cell type-specific alternative splicing is regulated by the KH domain protein SLM1. J Cell Biol. 2014;204(3):331–42.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kim EY, Schrader N, Smolinsky B, Bedet C, Vannier C, Schwarz G, et al. Deciphering the structural framework of glycine receptor anchoring by gephyrin. EMBO J. 2006;25(6):1385–95.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kins S, Betz H, Kirsch J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci. 2000;3(1):22–9.PubMedCrossRefGoogle Scholar
  20. Kneussel M, Betz H. Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci. 2000;23(9):429–35.PubMedCrossRefGoogle Scholar
  21. Lionel AC, Vaags AK, Sato D, Gazzellone MJ, Mitchell EB, Chen HY, et al. Rare exonic deletions implicate the synaptic organizer gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum Mol Genet. Oxford University Press 2013;22(10):2055–66.PubMedCrossRefGoogle Scholar
  22. Ludolphs M, Schneeberger D, Soykan T, Schäfer J, Papadopoulos T, Brose N, et al. Specificity of collybistin-phosphoinositide interactions: impact of the individual protein domains. J Biol Chem. 2016;291(1):244–54.PubMedCrossRefGoogle Scholar
  23. Okada H, Uezu A, Mason FM, Soderblom EJ, Moseley MA, Soderling SH. SH3 domain-based phototrapping in living cells reveals Rho family GAP signaling complexes. Sci Signal. 2011;4(201):rs13–3.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Papadopoulos T, Korte M, Eulenburg V, Kubota H, Retiounskaia M, Harvey RJ, Harvey K, O’Sullivan GA, Laube B, Hülsmann S, Geiger JR, Betz H. Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J. 2007;26(17):3888–99.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Petrini EM, Ravasenga T, Hausrat TJ, Iurilli G, Olcese U, Racine V, et al. Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat Commun. 2014;5.Google Scholar
  26. Porcher C, Hatchett C, Longbottom RE, McAinch K, Sihra TS, Moss SJ, et al. Positive feedback regulation between -aminobutyric acid type a (GABAA) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons. J Biol Chem. 2011;286(24):21667–77.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ramming M, Betz H, Kirsch J. Analysis of the promoter region of the murine gephyrin gene. FEBS Lett. 1997;405(2):137–40.PubMedCrossRefGoogle Scholar
  28. Reiss J, Gross-Hardt S, Christensen E, Schmidt P, Mendel RR, Schwarz G. A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am J Hum Genet. 2001;68(1):208–13.PubMedCrossRefGoogle Scholar
  29. Sander B, Tria G, Shkumatov AV, Kim EY, Grossmann JG, Tessmer I, et al. Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. Acta Crystallogr D Biol Crystallogr. 2013;69(10):2050–60.PubMedCrossRefGoogle Scholar
  30. Schwarz G, Schrader N, Mendel RR, Hecht H-J, Schindelin H. Crystal structures of human gephyrin and plant Cnx1 G domains: comparative analysis and functional implications. J Mol Biol. 2001;312(2):405–18.PubMedCrossRefGoogle Scholar
  31. Sola M, Bavro VN, Timmins J, Franz T, Ricard-Blum S, Schoehn G, et al. Structural basis of dynamic glycine receptor clustering by gephyrin. EMBO J. 2004;23(13):2510–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Stallmeyer B, Schwarz G, Schulze J, Nerlich A, Reiss J, Kirsch J, et al. The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Proc Natl Acad Sci U S A. 1999;96(4):1333–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Tyagarajan SK, Fritschy J-M. Gephyrin: a master regulator of neuronal function? Nat Rev Neurosci. 2014;15(3):141–56.CrossRefPubMedGoogle Scholar
  34. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. CLIP identifies Nova-regulated RNA networks in the brain. Science. 2003;302(5648):1212–5.PubMedCrossRefGoogle Scholar
  35. Villa KL, Berry KP, Subramanian J, Cha JW, WC O, Kwon H-B, et al. Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron. 2016;89(4):756–69.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Pharmacology and Toxicology, Center for Neuroscience Zurich (ZNZ)University of ZurichZurichSwitzerland