Skip to main content

Gephyrin

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

Geph; Gphn; KIAA1385

Synapse and Gephyrin

Large size and polarity of neuronal cell make spatiotemporal segregation of biochemical reactions and signal transduction pathways very important. In addition to the membrane-enclosed organelles, neurons also contain specialized apparatus called synapses for effective communication within the system. The presynaptic terminals containing the relevant neurotransmitter vesicles are opposed by the concomitant receptors for effective signal transduction. Information receiving, interpretation, and storage are facilitated by a resident sub-membranous protein-rich compartment. Such protein-rich compartments are referred to as postsynaptic densities (PSD), which can be a few hundred nanometers in width and ~30 to 50 nm in thickness (Chen et al. 2008).

Since the identification of inhibitory glycine receptor (GlyR) from rat spinal cord, gephyrin has assumed a central role in our current understanding of inhibitory postsynaptic organization and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bechade C, Colin I, Kirsch J, Betz H, Triller A. Expression of glycine receptor α subunits and gephyrin in cultured spinal neurons. Eur J Neurosci. Blackwell Publishing Ltd1996;8(2):429–35.

    Article  PubMed  CAS  Google Scholar 

  • Beuter S, Ardi Z, Horovitz O, Wuchter J, Keller S, Saha R, et al. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Sci Rep. 2016;6:29710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brünig I, Penschuck S, Berninger B, Benson JA, Fritschy JM. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAA receptor surface expression. Eur J Neurosci [Internet]. 2001;7(7):1320–8 .Available from: http://dx.doi.org/10.1046/j.0953-816x.2001.01506.x

    Article  PubMed  Google Scholar 

  • Chen X, Winters C, Azzam R, Li X, Galbraith JA, Leapman RD, et al. Organization of the core structure of the postsynaptic density. Proc Natl Acad Sci. 2008;105(11):4453–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choquet D, Triller A. The dynamic synapse. Neuron. 2013;80(3):691–703.

    Article  PubMed  CAS  Google Scholar 

  • Dejanovic B, Schwarz G. Neuronal nitric oxide synthase-dependent S-nitrosylation of gephyrin regulates gephyrin clustering at GABAergic synapses. J Neurosci. 2014;34(23):7763–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dejanovic B, Semtner M, Ebert S, Lamkemeyer T, Neuser F, Lüscher B, et al. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol. 2014;12(7):e1001908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dejanovic B, Djémié T, Grünewald N, Suls A, Kress V, Hetsch F, et al. Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy. EMBO Mol Med. 2015;7(12):1580–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, Betz H, et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science. 1998;282(5392):1321–4.

    Article  CAS  PubMed  Google Scholar 

  • Förstera B, Belaidi AA, Jüttner R, Bernert C, Tsokos M, Lehmann T-N, et al. Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain. 2010;133(Pt 12):3778–94.

    Article  PubMed  Google Scholar 

  • Fossati M, Pizzarelli R, Schmidt ER, Kupferman JV, Stroebel D, Polleux F, et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron. 2016;91(2):356–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fritschy J-M, Harvey RJ, Schwarz G. Gephyrin: where do we stand, where do we go? Trends Neurosci. 2008;31(5):257–64.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh H, Auguadri L, Battaglia S, Simone Thirouin Z, Zemoura K, Messner S, Acuña MA, Wildner H, Yévenes GE, Dieter A, Kawasaki H, O Hottiger M, Zeilhofer HU, Fritschy JM, Tyagarajan SK. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nat Commun. 2016;7:13365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giannone G, Mondin M, Grillo-Bosch D, Tessier B, Saint-Michel E, Czöndör K, et al. Neurexin-1β binding to neuroligin-1 triggers the preferential recruitment of PSD-95 versus gephyrin through tyrosine phosphorylation of neuroligin-1. Cell Rep. 2013;3(6):1996–2007.

    Article  PubMed  CAS  Google Scholar 

  • Grosskreutz Y, Betz H, Kneussel M. Rescue of molybdenum cofactor biosynthesis in gephyrin-deficient mice by a Cnx1 transgene. Biochem Biophys Res Commun. 2003;301(2):450–5.

    Article  PubMed  CAS  Google Scholar 

  • Iijima T, Wu K, Witte H, Hanno-Iijima Y, Glatter T, Richard S, et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell. 2011;147(7):1601–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iijima T, Iijima Y, Witte H, Scheiffele P. Neuronal cell type-specific alternative splicing is regulated by the KH domain protein SLM1. J Cell Biol. 2014;204(3):331–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim EY, Schrader N, Smolinsky B, Bedet C, Vannier C, Schwarz G, et al. Deciphering the structural framework of glycine receptor anchoring by gephyrin. EMBO J. 2006;25(6):1385–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kins S, Betz H, Kirsch J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci. 2000;3(1):22–9.

    Article  PubMed  CAS  Google Scholar 

  • Kneussel M, Betz H. Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci. 2000;23(9):429–35.

    Article  PubMed  CAS  Google Scholar 

  • Lionel AC, Vaags AK, Sato D, Gazzellone MJ, Mitchell EB, Chen HY, et al. Rare exonic deletions implicate the synaptic organizer gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum Mol Genet. Oxford University Press 2013;22(10):2055–66.

    Article  PubMed  CAS  Google Scholar 

  • Ludolphs M, Schneeberger D, Soykan T, Schäfer J, Papadopoulos T, Brose N, et al. Specificity of collybistin-phosphoinositide interactions: impact of the individual protein domains. J Biol Chem. 2016;291(1):244–54.

    Article  PubMed  CAS  Google Scholar 

  • Okada H, Uezu A, Mason FM, Soderblom EJ, Moseley MA, Soderling SH. SH3 domain-based phototrapping in living cells reveals Rho family GAP signaling complexes. Sci Signal. 2011;4(201):rs13–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papadopoulos T, Korte M, Eulenburg V, Kubota H, Retiounskaia M, Harvey RJ, Harvey K, O’Sullivan GA, Laube B, Hülsmann S, Geiger JR, Betz H. Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J. 2007;26(17):3888–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrini EM, Ravasenga T, Hausrat TJ, Iurilli G, Olcese U, Racine V, et al. Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat Commun. 2014;5.

    Google Scholar 

  • Porcher C, Hatchett C, Longbottom RE, McAinch K, Sihra TS, Moss SJ, et al. Positive feedback regulation between -aminobutyric acid type a (GABAA) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons. J Biol Chem. 2011;286(24):21667–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramming M, Betz H, Kirsch J. Analysis of the promoter region of the murine gephyrin gene. FEBS Lett. 1997;405(2):137–40.

    Article  PubMed  CAS  Google Scholar 

  • Reiss J, Gross-Hardt S, Christensen E, Schmidt P, Mendel RR, Schwarz G. A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am J Hum Genet. 2001;68(1):208–13.

    Article  PubMed  CAS  Google Scholar 

  • Sander B, Tria G, Shkumatov AV, Kim EY, Grossmann JG, Tessmer I, et al. Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. Acta Crystallogr D Biol Crystallogr. 2013;69(10):2050–60.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz G, Schrader N, Mendel RR, Hecht H-J, Schindelin H. Crystal structures of human gephyrin and plant Cnx1 G domains: comparative analysis and functional implications. J Mol Biol. 2001;312(2):405–18.

    Article  PubMed  CAS  Google Scholar 

  • Sola M, Bavro VN, Timmins J, Franz T, Ricard-Blum S, Schoehn G, et al. Structural basis of dynamic glycine receptor clustering by gephyrin. EMBO J. 2004;23(13):2510–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stallmeyer B, Schwarz G, Schulze J, Nerlich A, Reiss J, Kirsch J, et al. The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Proc Natl Acad Sci U S A. 1999;96(4):1333–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tyagarajan SK, Fritschy J-M. Gephyrin: a master regulator of neuronal function? Nat Rev Neurosci. 2014;15(3):141–56.

    Article  CAS  PubMed  Google Scholar 

  • Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. CLIP identifies Nova-regulated RNA networks in the brain. Science. 2003;302(5648):1212–5.

    Article  PubMed  CAS  Google Scholar 

  • Villa KL, Berry KP, Subramanian J, Cha JW, WC O, Kwon H-B, et al. Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron. 2016;89(4):756–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva K. Tyagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tsai, YC., Tyagarajan, S.K. (2018). Gephyrin. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101672

Download citation

Publish with us

Policies and ethics