Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Mark D. GorrellEmail author
  • Hui Emma Zhang
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101654


Historical Background

Dipeptidyl peptidase (DPP) 8 is a member of the DPP4/DPP-IV gene and enzyme family, which belongs to clan SC of serine proteases, family S9, subfamily S9B. S9B proteases have a unique ability to remove Xaa-Pro dipeptides from the N-terminus of substrates. Fibroblast activation protein (FAP), DPP4, DPP8, and DPP9 are the S9B peptidases. Several extensive reviews provide detail (Zhang et al. 2013; Waumans et al. 2015; Klemann et al. 2016; Wilson et al. 2016).

DPP8 has been localized to human chromosome 15q22.32 (Abbott et al. 2000) and 9:65032458 in the mouse. The human DPP8 gene spans 71 kb and comprises 20 exons (Abbott et al. 2000), which is shorter and with fewer exons than DPP4 but encodes more amino acids (882 versus 766 residues). In DPP8 and DPP9, the gene sequence encoding the catalytic serine and its nearby highly conserved amino acids is in a single exon, whereas in...

This is a preview of subscription content, log in to check access.



MDG is supported by grants 1105238 and 1113842 from the Australian National Health and Medical Research Council.


  1. Abbott CA, Yu DMT, Woollatt E, Sutherland GR, McCaughan GW, Gorrell MD. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur J Biochem. 2000;267:6140–50.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ajami K, Pitman MR, Wilson CH, Park J, Menz RI, Starr AE, et al. Stromal cell-derived factors 1 alpha and 1 beta, inflammatory protein-10 and interferon-inducible T cell chemo-attractant are novel substrates of dipeptidyl peptidase 8. FEBS Lett. 2008;582:819–25.  https://doi.org/10.1016/j.febslet.2008.02.005.CrossRefPubMedCentralPubMedGoogle Scholar
  3. Geiss-Friedlander R, Parmentier N, Moeller U, Urlaub H, Van den Eynde BJ, Melchior F. The cytoplasmic peptidase DPP9 is rate-limiting for degradation of proline-containing peptides. J Biol Chem. 2009;284:27211–9.  https://doi.org/10.1074/jbc.M109.041871.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Han R, Wang X, Bachovchin W, Zukowska Z, Osborn JW. Inhibition of dipeptidyl peptidase 8/9 impairs preadipocyte differentiation. Sci Rep. 2015;5:12348.  https://doi.org/10.1038/srep12348.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Justa-Schuch D, Möller U, Geiss-Friedlander R. The amino terminus extension in the long dipeptidyl peptidase 9 isoform contains a nuclear localization signal targeting the active peptidase to the nucleus. Cell Mol Life Sci. 2014;71:3611–26.  https://doi.org/10.1007/s00018-014-1591-6.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Klemann C, Wagner L, Stephan M, von Hörsten S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol. 2016;185:1–21.  https://doi.org/10.1111/cei.12781.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Park J, Knott HM, Nadvi NA, Collyer CA, Wang XM, Church WB, et al. Reversible inactivation of human dipeptidyl peptidases 8 and 9 by oxidation. The Open Enz Inhib J. 2008;1:52–61. http://www.bentham.org/open/toeij/openaccess2.htmCrossRefGoogle Scholar
  8. Rainczuk A, Rao JR, Gathercole JL, Fairweather NJ, Chu S, Masadah R, et al. Evidence for the antagonistic form of CXC-motif chemokine CXCL10 in serous epithelial ovarian tumours. Int J Cancer. 2014;134:530–41.  https://doi.org/10.1002/ijc.28393.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Spagnuolo PA, Hurren R, Gronda M, Maclean N, Datti A, Basheer A, et al. Inhibition of intracellular dipeptidyl peptidases 8 and 9 enhances parthenolide's anti-leukemic activity. Leukemia. 2013;27:1236–44.  https://doi.org/10.1038/leu.2013.9.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Walsh MP, Duncan B, Larabee S, Krauss A, Davis JP, Cui Y, et al. Val-BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors. PLoS One. 2013;8:e58860.  https://doi.org/10.1371/journal.pone.0058860.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Waumans Y, Baerts L, Kehoe K, Lambeir A-M, De Meester I. The dipeptidyl peptidase family, prolyl oligopeptidase and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front Immunol. 2015;6:387–405.  https://doi.org/10.3389/fimmu.2015.00387.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Waumans Y, Vliegen G, Maes L, Rombouts M, Declerck K, Veken PVD, et al. The dipeptidyl peptidases 4, 8, and 9 in mouse monocytes and macrophages: DPP8/9 inhibition attenuates M1 macrophage activation in mice. Inflammation. 2016;39:413–24.  https://doi.org/10.1007/s10753-015-0263-5.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Wilson CH, Indarto D, Doucet A, Pogson LD, Pitman MR, Menz RI, et al. Identifying natural substrates for dipeptidyl peptidase 8 (DP8) and DP9 using terminal amine isotopic labelling of substrates, TAILS, reveals in vivo roles in cellular homeostasis and energy metabolism. J Biol Chem. 2013;288:13936–49.  https://doi.org/10.1074/jbc.M112.445841.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Wilson CH, Zhang HE, Gorrell MD, Abbott CA. Dipeptidyl peptidase substrate discovery: current progress and the application of mass spectrometry - based approaches. Biol Chem. 2016;397:837–56.  https://doi.org/10.1515/hsz-2016-0174.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Wu W, Liu Y, Milo Jr LJ, Shu Y, Zhao P, Li Y, et al. 4-Substituted boro-proline dipeptides: synthesis, characterization, and dipeptidyl peptidase IV, 8, and 9 activities. Bioorg Med Chem Lett 2012;22:5536–5540.  https://doi.org/10.1016/j.bmcl.2012.07.033.CrossRefGoogle Scholar
  16. Yao T-W, Kim W-S, Yu DM, Sharbeen G, McCaughan GW, Choi K-Y, et al. A novel role of dipeptidyl peptidase 9 in epidermal growth factor signaling. Mol Cancer Res. 2011;9:948–59.  https://doi.org/10.1158/1541-7786.MCR-10-0272.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Yu DMT, Ajami K, Gall MG, Park J, Lee CS, Evans KA, et al. The in vivo expression of dipeptidyl peptidases 8 and 9. J Histochem Cytochem. 2009;57:1025–40.  https://doi.org/10.1369/jhc.2009.953760.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Zhang H, Chen Y, Keane FM, Gorrell MD. Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol Cancer Res. 2013;11:1487–96.  https://doi.org/10.1158/1541-7786.mcr-13-0272.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Zhang H, Chen Y, Wadham C, GW MC, Keane FM, Gorrell MD. Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin. BBA Mol Cell Res. 2015a;1853:470–80.  https://doi.org/10.1016/j.bbamcr.2014.11.029.CrossRefGoogle Scholar
  20. Zhang H, Maqsudi S, Rainczuk A, Duffield N, Lawrence J, Keane FM, et al. Identification of novel dipeptidyl peptidase 9 substrates by two-dimensional differential in-gel electrophoresis. FEBS J. 2015b;282:3737–57.  https://doi.org/10.1111/febs.13371.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centenary Institute and Sydney Medical SchoolThe University of SydneyNewtownAustralia