Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Superoxide Dismutase 1-3

  • Mikko O. LaukkanenEmail author
  • Alessia Parascandolo
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101647


 CuZnSOD;  EC-SOD;  MnSOD;  SOD1;  SOD2;  SOD3

Historical Background

According to oxygenic theory of evolution, the atmosphere initially contained low concentration of oxygen. The genesis of photosynthetic organisms approximately 2.5 billion years ago initiated the development of plants and other life-forms able to use aerobic metabolism. Reactive oxygen species (ROS), although needed to normal cellular functions, are in aberrant concentrations potentially harmful molecules damaging various cellular structures. Hence, it is probable that already the first living organisms acquired antioxidative defense mechanisms. Superoxide dismutases (SOD) represent a reduction-oxidation (redox) metalloprotein enzyme family, which, according to oxygenic theory of evolution, was connected to the availability of transition metals in the biosphere (Bannister et al. 1991).

There are three members in mammalian superoxide dismutase family: CuZnSOD (SOD1), MnSOD (SOD2), and EC-SOD (SOD3)....

This is a preview of subscription content, log in to check access.


  1. Adachi T, et al. Infliximab neutralizes the suppressive effect of TNF-a on expression of extracellular-superoxide dismutase in vitro. Biol Pharm Bull. 2006;29:2095–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bannister WH, et al. Evolutionary aspects of superoxide dismutase: the copper/zinc Enzyme. Free Radic Res Commun. 1991;12–13:349–61.CrossRefGoogle Scholar
  3. Castellone MD, et al. Extracellular superoxide dismutase induces mouse embryonic fibroblast proliferative burst, growth arrest, immortalization, and consequent in vivo tumorigenesis. Antioxid Redox Signal. 2014;21:1460–74.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Harraz MM, et al. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest. 2008;118:659–70.PubMedPubMedCentralGoogle Scholar
  5. Hitchler MJ, Domann FE. Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis. Antioxid Redox Signal. 2014;20:1590–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Imai Y, et al. Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence switch. Cell Rep. 2014;7:194–207.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Kinsella S, et al. Bid promotes K63-linked polyubiquitination of tumor necrosis factor receptor associated factor 6 (TRAF6) and sensitizes to mutant SOD1-induced proinflammatory signaling in microglia. eNeuro. 2016;3:pii ENEURO.0099-15.2016.Google Scholar
  8. Laatikainen LE, et al. Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer. Endocr Relat Cancer. 2010;17:785–96.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Laatikainen LE, et al. SOD3 decreases ischemic injury derived apoptosis through phosphorylation of Erk1/2, Akt, and FoxO3a. PLoS One. 2011;6:e24456.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Laukkanen MO, et al. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI. PLoS One. 2015;10:e0121441.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Laukkanen MO. Extracellular superoxide dismutase: growth promoter or tumor suppressor? Oxid Med Cell Longev. 2016;2016:3612589.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Leikam C, et al. Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene. 2008;27: 7070–82.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Mann T and Keilin D. Haemocuprein and hepatocuprein, copper-protein compounds of blood and liver in mammals. Proc Roy Sot Ser B Biol Sci. 1939;126:303–15.CrossRefGoogle Scholar
  14. Marklund SL. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A. 1982;79:7634–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Mitsushita J, et al. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 2004;64: 3580–5.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Porter H and Folch J. Cerebrocuprein I. A copper-containing protein isolated from brain. J Neurochem. 1957;1:260–71.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Tainer JA, et al. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983;306:284–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Wang CA, et al. Vascular endothelial growth factor C promotes breast cancer progression via a novel antioxidant mechanism that involves regulation of superoxide dismutase 3. Breast Cancer Res. 2014;16:462.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Weisiger RA and Fridovich I. Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem. 1973;248:4793–6.PubMedPubMedCentralGoogle Scholar
  20. Zimmermann R, et al. Inhibition of lipid peroxidation in isolated inner membrane of rat liver mitochondria by superoxide dismutase. FEBS Lett. 1973;29:117–20.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.IRCCS SDNNaplesItaly