Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

CHT1 (High-Affinity Choline Transporter)

  • Takashi Okuda
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101645

Synonyms

 CHT;  SLC5A7

Historical Background

The neurotransmitter acetylcholine (ACh) interacts with the nicotinic and muscarinic ACh receptors and is involved in a variety of physiological, behavioral, and cognitive functions in the central and peripheral nervous system. ACh is synthesized from choline and acetyl coenzyme A by choline acetyltransferase in the cholinergic presynaptic terminals. Although it has long been recognized from classic studies on ACh metabolism that exogenous choline is critical for ACh synthesis, it was not until the 1970s that the existence of high-affinity choline transporters in cholinergic neurons was postulated based on studies using isolated nerve ending particles (synaptosomes). Extracellular choline is actively transported into the presynaptic terminals by the Na+-dependent, high-affinity choline transporter in the plasma membrane and subsequently used for ACh synthesis. The high-affinity choline uptake is the rate-limiting step in ACh synthesis....

This is a preview of subscription content, log in to check access.

References

  1. Barwick KE, Wright J, Al-Turki S, McEntagart MM, Nair A, Chioza B, et al. Defective presynaptic choline transport underlies hereditary motor neuropathy. Am J Hum Genet. 2012;91:1103–7. doi:10.1016/j.ajhg.2012.09.019.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bauche S, O’Regan S, Azuma Y, Laffargue F, McMacken G, Sternberg D, et al. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am J Hum Genet. 2016;99:753–61. doi:10.1016/j.ajhg.2016.06.033.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bazalakova MH, Wright J, Schneble EJ, McDonald MP, Heilman CJ, Levey AI, et al. Deficits in acetylcholine homeostasis, receptors and behaviors in choline transporter heterozygous mice. Genes Brain Behav. 2007;6:411–24. doi:10.1111/j.1601-183X.2006.00269.x.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berse B, Szczecinska W, Lopez-Coviella I, Madziar B, Zemelko V, Kaminski R, et al. Expression of high affinity choline transporter during mouse development in vivo and its upregulation by NGF and BMP-4 in vitro. Brain Res Dev Brain Res. 2005;157:132–40. doi:10.1016/j.devbrainres.2005.03.013.CrossRefPubMedPubMedCentralGoogle Scholar
  5. English BA, Hahn MK, Gizer IR, Mazei-Robison M, Steele A, Kurnik DM, et al. Choline transporter gene variation is associated with attention-deficit hyperactivity disorder. J Neurodev Disord. 2009;1:252–63. doi:10.1007/s11689-009-9033-8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ennis EA, Wright J, Retzlaff CL, McManus OB, Lin Z, Huang X, et al. Identification and characterization of ML352: a novel, noncompetitive inhibitor of the presynaptic choline transporter. ACS Chem Neurosci. 2015;6:417–27. doi:10.1021/cn5001809.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science. 2008;321:810–4. doi:10.1126/science.1160406.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ferguson SM, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman CJ, et al. Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci. 2003;23:9697–709.PubMedCrossRefGoogle Scholar
  9. Ferguson SM, Bazalakova M, Savchenko V, Tapia JC, Wright J, Blakely RD. Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice. Proc Natl Acad Sci U S A. 2004;101:8762–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Gates Jr J, Ferguson SM, Blakely RD, Apparsundaram S. Regulation of choline transporter surface expression and phosphorylation by protein kinase C and protein phosphatase 1/2A. J Pharmacol Exp Ther. 2004;310:536–45.PubMedCrossRefGoogle Scholar
  11. Hahn MK, Blackford JU, Haman K, Mazei-Robison M, English BA, Prasad HC, et al. Multivariate permutation analysis associates multiple polymorphisms with subphenotypes of major depression. Genes Brain Behav. 2008;7:487–95. doi:10.1111/j.1601-183X.2007.00384.x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Iwamoto H, Blakely RD, De Felice LJ. Na+, Cl, and pH dependence of the human choline transporter (hCHT) in Xenopus oocytes: the proton inactivation hypothesis of hCHT in synaptic vesicles. J Neurosci. 2006;26:9851–9.PubMedCrossRefGoogle Scholar
  13. Kratsios P, Stolfi A, Levine M, Hobert O. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat Neurosci. 2012;15:205–14. doi:10.1038/nn.2989.CrossRefGoogle Scholar
  14. Krishnaswamy A, Cooper E. An activity-dependent retrograde signal induces the expression of the high-affinity choline transporter in cholinergic neurons. Neuron. 2009;61:272–86. doi:10.1016/j.neuron.2008.11.025.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Madziar B, Shah S, Brock M, Burke R, Lopez-Coviella I, Nickel AC, et al. Nerve growth factor regulates the expression of the cholinergic locus and the high-affinity choline transporter via the Akt/PKB signaling pathway. J Neurochem. 2008;107:1284–93. doi:10.1111/j.1471-4159.2008.05681.x.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Misawa H, Nakata K, Matsuura J, Nagao M, Okuda T, Haga T. Distribution of the high-affinity choline transporter in the central nervous system of the rat. Neuroscience. 2001;105:87–98.PubMedCrossRefGoogle Scholar
  17. Nakata K, Okuda T, Misawa H. Ultrastructural localization of high-affinity choline transporter in the rat neuromuscular junction: enrichment on synaptic vesicles. Synapse. 2004;53:53–6.PubMedCrossRefGoogle Scholar
  18. Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I. Identification and characterization of the high-affinity choline transporter. Nat Neurosci. 2000;3:120–5.PubMedCrossRefGoogle Scholar
  19. Okuda T, Okamura M, Kaitsuka C, Haga T, Gurwitz D. Single nucleotide polymorphism of the human high affinity choline transporter alters transport rate. J Biol Chem. 2002;277:45315–22.PubMedCrossRefGoogle Scholar
  20. Okuda T, Konishi A, Misawa H, Haga T. Substrate-induced internalization of the high-affinity choline transporter. J Neurosci. 2011;31:14989–97. doi:10.1523/JNEUROSCI.2983-11.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Okuda T, Osawa C, Yamada H, Hayashi K, Nishikawa S, Ushio T, et al. Transmembrane topology and oligomeric structure of the high-affinity choline transporter. J Biol Chem. 2012;287:42826–34. doi:10.1074/jbc.M112.405027.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Parikh V, St Peters M, Blakely RD, Sarter M. The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. J Neurosci. 2013;33:2326–37. doi:10.1523/jneurosci.4993-12.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ribeiro FM, Alves-Silva J, Volknandt W, Martins-Silva C, Mahmud H, Wilhelm A, et al. The hemicholinium-3 sensitive high affinity choline transporter is internalized by clathrin-mediated endocytosis and is present in endosomes and synaptic vesicles. J Neurochem. 2003;87:136–46.PubMedCrossRefGoogle Scholar
  24. Ribeiro FM, Black SA, Cregan SP, Prado VF, Prado MA, Rylett RJ, et al. Constitutive high-affinity choline transporter endocytosis is determined by a carboxyl-terminal tail dileucine motif. J Neurochem. 2005;94:86–96.PubMedCrossRefGoogle Scholar
  25. Schueler FW. A new group of respiratory paralyzants. I. The “hemicholiniums”. J Pharmacol Exp Ther. 1955;115:127–43.PubMedPubMedCentralGoogle Scholar
  26. Simon JR, Kuhar MG. Impulse-flow regulation of high affinity choline uptake in brain cholinergic nerve terminals. Nature. 1975;255:162–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pharmacology, Faculty of PharmacyKeio UniversityTokyoJapan