Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

High Mobility Group Box B1

  • Xuanbin Wang
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101643

Synonyms

Historical Background

High mobility group (HMG) chromosomal protein family was first discovered in 1973 (Goodwin and Johns 1973; Goodwin et al. 1973). At that time, the name HMG was defined according to their high electrophoretic mobility in polyacrylamide gels. Then in 1976, α-helix structures of HMGs were identified (Baker et al. 1976; Cary et al. 1976). In 2001, the domains of HMG1 were characterized (Thomas 2001), and at the same year, the HMG Chromosomal Protein Nomenclature Committee recategorized the proteins into three superfamilies: HMGB (formerly known as HMG-1/2), HMGA (formerly known as HMG-14/17), and HMGN (formerly known as HMG-1/Y) (Bustin 2001). Up to date, the functions of HMGB family...

This is a preview of subscription content, log in to check access.

References

  1. Baker C, Isenberg I, Goodwin GH, Johns EW. Physical studies of the nonhistone chromosomal proteins HMG-U and HMG-2. Biochemistry. 1976;15:1645–9.PubMedCrossRefGoogle Scholar
  2. Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genes Dev. 2005;15:496–506.  https://doi.org/10.1016/j.gde.2005.08.007.CrossRefGoogle Scholar
  3. Bianchi ME, Falciola L, Ferrari S, Lilley DM. The DNA binding site of HMG1 protein is composed of two similar segments (HMG boxes), both of which have counterparts in other eukaryotic regulatory proteins. EMBO J. 1992;11:1055–63.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bonne-Andrea C, Harper F, Sobczak J, De Recondo AM. Rat liver HMG1: a physiological nucleosome assembly factor. EMBO J. 1984;3:1193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature. 2001;410:1103–7.  https://doi.org/10.1038/35074114.CrossRefPubMedGoogle Scholar
  6. Bustin M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci. 2001;26:152–3.PubMedCrossRefGoogle Scholar
  7. Cary PD, Crane-Robinson C, Bradbury EM, Javaherian K, Goodwin GH, Johns EW. Conformational studies of two non-histone chromosomal proteins and their interactions with DNA. Eur J Biochem/FEBS. 1976;62:583–90.CrossRefGoogle Scholar
  8. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323:1722–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen R, Hou W, Zhang Q, Kang R, Fan XG, Tang D. Emerging role of high-mobility group box 1 (HMGB1) in liver diseases. Mol Med. 2013;19:357–66.  https://doi.org/10.2119/molmed.2013.00099.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13:832–42.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Enokido Y, Yoshitake A, Ito H, Okazawa H. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem Biophys Res Commun. 2008;376:128–33.  https://doi.org/10.1016/j.bbrc.2008.08.108.CrossRefPubMedGoogle Scholar
  12. Fages C, Nolo R, Huttunen HJ, Eskelinen E, Rauvala H. Regulation of cell migration by amphoterin. J Cell Sci. 2000;113(Pt 4):611–20.PubMedGoogle Scholar
  13. Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci. 2011;31:1081–92.  https://doi.org/10.1523/JNEUROSCI.3732-10.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Goodwin GH, Johns EW. Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. Eur J Biochem/FEBS. 1973;40:215–9.CrossRefGoogle Scholar
  15. Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem/FEBS. 1973;38:14–9.CrossRefGoogle Scholar
  16. Grosschedl R, Giese K, Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994;10:94–100.PubMedCrossRefGoogle Scholar
  17. Hagiwara S, Iwasaka H, Hasegawa A, Asai N, Uchida T, Noguchi T. Dendritic cell activation in response to ischemia-reperfusion injury of the small intestine. Surg Today. 2010;40:137–45.  https://doi.org/10.1007/s00595-009-4033-6.CrossRefPubMedGoogle Scholar
  18. Hayakawa K, Mishima K, Irie K, Hazekawa M, Mishima S, Fujioka M, et al. Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology. 2008;55:1280–6.  https://doi.org/10.1016/j.neuropharm.2008.06.040.CrossRefPubMedGoogle Scholar
  19. Huang H, Nace GW, McDonald KA, Tai S, Klune JR, Rosborough BR, et al. Hepatocyte-specific high-mobility group box 1 deletion worsens the injury in liver ischemia/reperfusion: a role for intracellular high-mobility group box 1 in cellular protection. Hepatology. 2014;59:1984–97.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Huang Y, Yin H, Han J, Huang B, Xu J, Zheng F, et al. Extracellular hmgb1 functions as an innate immune-mediator implicated in murine cardiac allograft acute rejection. Am J Transplant. 2007;7:799–808.  https://doi.org/10.1111/j.1600-6143.2007.01734.x.CrossRefPubMedGoogle Scholar
  21. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Mol Asp Med. 2014a;40:1–116.  https://doi.org/10.1016/j.mam.2014.05.001.CrossRefGoogle Scholar
  22. Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology. 2014b;146:1097–107.PubMedCrossRefGoogle Scholar
  23. Kao YH, Jawan B, Goto S, Hung CT, Lin YC, Nakano T, et al. High-mobility group box 1 protein activates hepatic stellate cells in vitro. Transplant Proc. 2008;40:2704–5.  https://doi.org/10.1016/j.transproceed.2008.07.055.CrossRefPubMedGoogle Scholar
  24. Kleen JK, Holmes GL. Taming TLR4 may ease seizures. Nat Med. 2010;16:369–70.  https://doi.org/10.1038/nm0410-369.CrossRefPubMedGoogle Scholar
  25. Kokkola R, Sundberg E, Ulfgren AK, Palmblad K, Li J, Wang H, et al. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis Rheum. 2002;46:2598–603.  https://doi.org/10.1002/art.10540.CrossRefPubMedGoogle Scholar
  26. Lange SS, Mitchell DL, Vasquez KM. High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc Natl Acad Sci U S A. 2008;105:10320–5.  https://doi.org/10.1073/pnas.0803181105.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lindersson EK, Hojrup P, Gai WP, Locker D, Martin D, Jensen PH. alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport. 2004;15:2735–9.PubMedGoogle Scholar
  28. Mazarati A, Maroso M, Iori V, Vezzani A, Carli M. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for Advanced Glycation End Products. Exp Neurol. 2011;232:143–8.  https://doi.org/10.1016/j.expneurol.2011.08.012.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nadatani Y, Watanabe T, Tanigawa T, Ohkawa F, Takeda S, Higashimori A, et al. High-mobility group box 1 inhibits gastric ulcer healing through Toll-like receptor 4 and receptor for advanced glycation end products. PLoS One. 2013;8:e80130.  https://doi.org/10.1371/journal.pone.0080130.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E, et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J. 2007;26:1129–39.  https://doi.org/10.1038/sj.emboj.7601552.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pedrazzi M, Averna M, Sparatore B, Patrone M, Salamino F, Marcoli M, et al. Potentiation of NMDA receptor-dependent cell responses by extracellular high mobility group box 1 protein. PLoS ONE. 2012;7:31.CrossRefGoogle Scholar
  32. Penzo M, Molteni R, Suda T, Samaniego S, Raucci A, Habiel DM, et al. Inhibitor of NF-kappa B kinases alpha and beta are both essential for high mobility group box 1-mediated chemotaxis [corrected]. J Immunol. 2010;184:4497–509.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Qi ML, Tagawa K, Enokido Y, Yoshimura N, Wada Y, Watase K, et al. Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nat Cell Biol. 2007;9:402–14.  https://doi.org/10.1038/ncb1553.CrossRefPubMedGoogle Scholar
  34. Radin JN, Gonzalez-Rivera C, Ivie SE, McClain MS, Cover TL. Helicobacter pylori VacA induces programmed necrosis in gastric epithelial cells. Infect Immun. 2011;79:2535–43.  https://doi.org/10.1128/IAI.01370-10.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rojas A, Perez-Castro R, Gonzalez I, Delgado F, Romero J, Rojas I. The emerging role of the receptor for advanced glycation end products on innate immunity. Int Rev Immunol. 2014;33:67–80.  https://doi.org/10.3109/08830185.2013.849702.CrossRefPubMedGoogle Scholar
  36. Sato F, Maruyama S, Hayashi H, Sakamoto I, Yamada S, Uchimura T, et al. High mobility group box chromosomal protein 1 in patients with renal diseases. Nephron Clin Pract. 2008;108:c194–201.  https://doi.org/10.1159/000118942.CrossRefPubMedGoogle Scholar
  37. Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS, Yue Z, et al. HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy. 2014;10:144–54.  https://doi.org/10.4161/auto.26751.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Steer SA, Scarim AL, Chambers KT, Corbett JA. Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med. 2006;3:e17.  https://doi.org/10.1371/journal.pmed.0030017.CrossRefPubMedGoogle Scholar
  39. Takata K, Kitamura Y, Kakimura J, Shibagaki K, Tsuchiya D, Taniguchi T, et al. Role of high mobility group protein-1 (HMG1) in amyloid-beta homeostasis. Biochem Biophys Res Commun. 2003;301:699–703.PubMedCrossRefGoogle Scholar
  40. Thomas JO. HMG1 and 2: architectural DNA-binding proteins. Biochem Soc Trans. 2001;29:395–401.PubMedCrossRefGoogle Scholar
  41. Topalova D, Ugrinova I, Pashev IG, Pasheva EA. HMGB1 protein inhibits DNA replication in vitro: a role of the acetylation and the acidic tail. Int J Biochem Cell Biol. 2008;40:1536–42.  https://doi.org/10.1016/j.biocel.2007.11.014.CrossRefPubMedGoogle Scholar
  42. Volz HC, Kaya Z, Katus HA, Andrassy M. The role of HMGB1/RAGE in inflammatory cardiomyopathy. Semin Thromb Hemost. 2010;36:185–94.  https://doi.org/10.1055/s-0030-1251503.CrossRefPubMedGoogle Scholar
  43. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Wang X, Xiang L, Li H, Chen P, Feng Y, Zhang J, et al. The role of HMGB1 signaling pathway in the development and progression of hepatocellular carcinoma: a review. Int J Mol Sci. 2015;16:22527–40.  https://doi.org/10.3390/ijms160922527.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Watanabe T, Kubota S, Nagaya M, Ozaki S, Nagafuchi H, Akashi K, et al. The role of HMGB-1 on the development of necrosis during hepatic ischemia and hepatic ischemia/reperfusion injury in mice. J Surg Res. 2005;124:59–66.  https://doi.org/10.1016/j.jss.2004.10.019.CrossRefPubMedGoogle Scholar
  46. Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest. 2007;117:2847–59.  https://doi.org/10.1172/JCI31008.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xu D, Young J, Song D, Esko JD. Heparan sulfate is essential for high mobility group protein 1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE). J Biol Chem. 2011;286:41736–44.  https://doi.org/10.1074/jbc.M111.299685.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yanai H, Matsuda A, An J, Koshiba R, Nishio J, Negishi H, et al. Conditional ablation of HMGB1 in mice reveals its protective function against endotoxemia and bacterial infection. Proc Natl Acad Sci U S A. 2013;110:20699–704.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, et al. A critical cysteine is required for HMGB1 binding to toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A. 2010;107:11942–7.  https://doi.org/10.1073/pnas.1003893107.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yang H, Lundback P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, et al. Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med. 2012;18:250–9.  https://doi.org/10.2119/molmed.2011.00389.CrossRefPubMedGoogle Scholar
  51. Zlatanova J, Leuba SH, van Holde K. Chromatin structure revisited. Crit Rev Eukaryot Gene Expr. 1999;9:245–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin HospitalHubei University of MedicineShiyanChina