Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Rab Geranylgeranyltransferase

  • Malgorzata GutkowskaEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101635


Historical Background

Many proteins interact with biological membranes in a transient way, and such interaction is a prerequisite of numerous cellular processes and vesicular transport, among others. Posttranslational lipid modification of a polypeptide results in a covalent attachment of the hydrophobic anchor and increased affinity of the particular peptide to cellular membranes. Two kinds of lipid moieties are most often added to intracellular proteins: fatty acids or prenyl groups (reviewed in Wang and Casey 2016; Hentschel et al. 2016). Protein geranylgeranylation is the posttranslational modification leading to an attachment of a 20-carbon geranylgeranyl isoprenoid chain to a specific cysteine residue in a protein by a thioether bond. Rab geranylgeranyltransferase (RGGT, EC is an enzyme responsible for di-geranylgeranylation of Rab proteins. The activity of this enzyme was first described in...
This is a preview of subscription content, log in to check access.


  1. Alory C, Balch WE. Molecular evolution of the Rab-escort-protein/guanine-nucleotide-dissociation-inhibitor superfamily. Mol Biol Cell. 2003;14(9):3857–67. doi:10.1091/E03-04-0227.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anant JS, Desnoyers L, et al. Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry. 1998;37(36):12559–68. doi:10.1021/bi980881a.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arora DK, Syed I, et al. Rab-geranylgeranyl transferase regulates glucose-stimulated insulin secretion from pancreatic beta cells. Islets. 2012;4(5):354–8. doi:10.4161/isl.22538.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baron RA, Seabra MC. Rab geranylgeranylation occurs preferentially via the pre-formed REP-RGGT complex and is regulated by geranylgeranyl pyrophosphate. Biochem J. 2008;415(1):67–75. doi:10.1042/BJ20080662.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caza TN, Fernandez DR, et al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann Rheum Dis. 2014;73(10):1888–97. doi:10.1136/annrheumdis-2013-203794.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Deraeve C, Guo Z, et al. Psoromic acid is a selective and covalent Rab-prenylation inhibitor targeting autoinhibited RabGGTase. J Am Chem Soc. 2012;134(17):7384–91. doi:10.1021/ja211305j.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Detter JC, Zhang Q, et al. Rab geranylgeranyl transferase alpha mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis. Proc Natl Acad Sci U S A. 2000;97(8):4144–9. doi:10.1073/pnas.080517697.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fratti RA, Jun Y, et al. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol. 2004;167(6):1087–98. doi:10.1083/jcb.200409068.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gomes AQ, Ali BR, et al. Membrane targeting of Rab GTPases is influenced by the prenylation motif. Mol Biol Cell. 2003;14(5):1882–99. doi:10.1091/mbc.E02-10-0639.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Guo Z, Wu YW, et al. Structures of RabGGTase-substrate/product complexes provide insights into the evolution of protein prenylation. EMBO J. 2008;27(18):2444–56. doi:10.1038/emboj.2008.164.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gutkowska M, Swiezewska E. Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein. Mol Membr Biol. 2012;29(7):243–56. doi:10.3109/09687688.2012.693211.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hentschel A, Zahedi RP, et al. Protein lipid modifications-More than just a greasy ballast. Proteomics. 2016;16(5):759–82. doi:10.1002/pmic.201500353.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91(1):119–49. doi:10.1152/physrev.00059.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Itzstein C, Coxon FP, et al. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases. 2011;2(3):117–30. doi:10.4161/sgtp.2.3.16453.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Keller P, Simons K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol. 1998;140(6):1357–67.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Melkonian KA, Ostermeyer AG. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem. 1999;274(6):3910–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Mitra S, Cheng KW, et al. Rab GTPases implicated in inherited and acquired disorders. Semin Cell Dev Biol. 2011;22(1):57–68. doi:10.1016/j.semcdb.2010.12.005.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Osanai K, Oikawa R, et al. A mutation in Rab38 small GTPase causes abnormal lung surfactant homeostasis and aberrant alveolar structure in mice. Am J Pathol. 2008;173(5):1265–74. doi:10.2353/ajpath.2008.080056.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pylypenko O, Rak A, et al. Structure of Rab escort protein-1 in complex with Rab geranylgeranyltransferase. Mol Cell. 2003;11(2):483–94.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Rasteiro R, Pereira-Leal JB. Multiple domain insertions and losses in the evolution of the Rab prenylation complex. BMC Evol Biol. 2007;7:140. doi:10.1186/1471-2148-7-140.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Recchi C, Seabra MC. Novel functions for Rab GTPases in multiple aspects of tumour progression. Biochem Soc Trans. 2012;40(6):1398–403. doi:10.1042/BST20120199.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Roelofs AJ, Hulley PA, et al. Selective inhibition of Rab prenylation by a phosphonocarboxylate analogue of risedronate induces apoptosis, but not S-phase arrest, in human myeloma cells. Int J Cancer. 2006;119(6):1254–61. doi:10.1002/ijc.21977.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sane KM, Mynderse M, et al. A novel geranylgeranyl transferase inhibitor in combination with lovastatin inhibits proliferation and induces autophagy in STS-26 T MPNST cells. J Pharmacol Exp Ther. 2010;333(1):23–33. doi:10.1124/jpet.109.160192.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Seabra MC, Brown MS, et al. Retinal degeneration in choroideremia: deficiency of rab geranylgeranyl transferase. Science. 1993;259(5093):377–81.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Seabra MC, Brown MS, et al. Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992;70(6):1049–57.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Shahinian S, Silvius JR. Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry. 1995;34(11):3813–22.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Silvius JR, l’Heureux F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry. 1994;33(10):3014–22.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Stinchcombe JC, Barral DC, et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol. 2001;152(4):825–34.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Tan KT, Guiu-Rozas E, et al. Design, synthesis, and characterization of peptide-based rab geranylgeranyl transferase inhibitors. J Med Chem. 2009;52(24):8025–37. doi:10.1021/jm901117d.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Taylor A, Mules EH, et al. Impaired prenylation of Rab GTPases in the gunmetal mouse causes defects in bone cell function. Small GTPases. 2011;2(3):131–42. doi:10.4161/sgtp.2.3.16488.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Thoma NH, Iakovenko A, et al. Phosphoisoprenoids modulate association of Rab geranylgeranyltransferase with REP-1. J Biol Chem. 2001a;276(52):48637–43. doi:10.1074/jbc.M108241200.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Thoma NH, Niculae A, et al. Double prenylation by RabGGTase can proceed without dissociation of the mono-prenylated intermediate. J Biol Chem. 2001b;276(52):48631–6. doi:10.1074/jbc.M106470200.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Van Gele M, Dynoodt P, et al. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res. 2009;22(3):268–82. doi:10.1111/j.1755-148X.2009.00558.x.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang M, Casey PJ. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol. 2016;17(2):110–22. doi:10.1038/nrm.2015.11.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang YC, Distefano MD. Synthetic isoprenoid analogues for the study of prenylated proteins: Fluorescent imaging and proteomic applications. Bioorg Chem. 2016 Feb;64:59-65. doi: 10.1016/j.bioorg.2015.12.003.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wang Y, Ng EL, et al. Rab23: what exactly does it traffic? Traffic. 2006;7(6):746–50. doi:10.1111/j.1600-0854.2006.00416.x.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhang H, Seabra MC, et al. Crystal structure of Rab geranylgeranyltransferase at 2.0 A resolution. Structure. 2000;8(3):241–51.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland