Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

GNAS Complex Locus

  • Serap Turan
  • Murat Bastepe
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101631


Historical Background

In 1942, Fuller Albright and his colleagues described a disease characterized by hypocalcemia and hyperphosphatemia, which appeared similar to hypoparathyroidism. However, injection of a parathyroid hormone (PTH) extract did not lead to increased urinary phosphate excretion or normalize serum calcium in the patients. Based on these findings, resistance to the actions of PTH was postulated, and the term pseudohypoparathyroidism (PHP) was coined (Albright et al. 1942). The patients additionally displayed a constellation of phenotypic features including short stature, obesity with round face, brachydactyly, subcutaneous ossifications, and cognitive impairment...

This is a preview of subscription content, log in to check access.


  1. Abramowitz J, Grenet D, Birnbaumer M, Torres HN, Birnbaumer L. XLalphas, the extra-long form of the alpha-subunit of the Gs G protein, is significantly longer than suspected, and so is its companion Alex. Proc Natl Acad Sci USA. 2004;101(22):8366–71.PubMedPubMedCentralGoogle Scholar
  2. Albright F, Butler AM, Hampton AO, Smith P. Syndrome characterised by osteitis fibrosa disseminata, areas of pigmentation and endocrine dysfunction, with precocious puberty in females: report of five cases. N Eng J Med. 1937;216:727–46.Google Scholar
  3. Albright F, Burnett CH, Smith PH, Parson W. Pseudo-hypoparathyroidism – an example of ‘Seabright-Bantam syndrome’: report of three cases. Endocrinology. 1942;30:922–32.Google Scholar
  4. Albright F, Forbes AP, Henneman PH. Pseudo-pseudohypoparathyroidism. Trans Assoc Am Phys. 1952;65:337–50.PubMedGoogle Scholar
  5. Aldred MA, Trembath RC. Activating and inactivating mutations in the human GNAS1 gene. Hum Mutat. 2000;16(3):183–9.PubMedGoogle Scholar
  6. Ashley PL, Ellison J, Sullivan KA, Bourne HR, Cox DR. Chromosomal assignment of the murine Gi and Gs genes. Am J Hum Genet. 1987;41:A155.Google Scholar
  7. Aydin C, Aytan N, Mahon MJ, Tawfeek HA, Kowall NW, Dedeoglu A, et al. Extralarge XL(alpha)s (XXL(alpha)s), a variant of stimulatory G protein alpha-subunit (Gs(alpha)), is a distinct, membrane-anchored GNAS product that can mimic Gs(alpha). Endocrinology. 2009;150(8):3567–75.PubMedPubMedCentralGoogle Scholar
  8. Bastepe M, Lane AH, Jüppner H. Paternal uniparental isodisomy of chromosome 20q – and the resulting changes in GNAS1 methylation – as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet. 2001;68(5):1283–9.PubMedPubMedCentralGoogle Scholar
  9. Bastepe M, Gunes Y, Perez-Villamil B, Hunzelman J, Weinstein LS, Jüppner H. Receptor-mediated adenylyl cyclase activation through XLalpha(s), the extra-large variant of the stimulatory G protein alpha-subunit. Mol Endocrinol. 2002;16(8):1912–9.PubMedGoogle Scholar
  10. Bastepe MFL, Hendy GN, Indridason OS, Josse RG, Koshiyama H, Körkkö J, Nakamoto JM, Rosenbloom AL, Slyper AH, Sugimoto T, Tsatsoulis A, Crawford JD, Jüppner H. Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest. 2003;12(8):1255–63.Google Scholar
  11. Bastepe MFL, Linglart A, Abu-Zah-ra HS, Tojo K, Ward LM, Jüppner H. Deletion of the NESP55 differentially methylated re- gion causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat Genet. 2005;37:25–7.PubMedGoogle Scholar
  12. Bauer RWC, Marksteiner J, Doblinger A, Fischer-Colbrie R, Laslop A. The new chromogranin-like protein NESP55 is preferentially localized in adrenaline-synthesizing cells of the bovine and rat adrenal medulla. Neurosci Lett. 1999;263(1):13–6.PubMedGoogle Scholar
  13. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349(6305):117–27.PubMedGoogle Scholar
  14. Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, et al. Insights into G protein structure, function, and regulation. Endocr Rev. 2003;24(6):765–81.PubMedGoogle Scholar
  15. Cairns DM, Pignolo RJ, Uchimura T, Brennan TA, Lindborg CM, Xu M, et al. Somitic disruption of GNAS in chick embryos mimics progressive osseous heteroplasia. J Clin Invest. 2013;123(8):3624–33.PubMedPubMedCentralGoogle Scholar
  16. Campbell R, Gosden CM, Bonthron DT. Parental origin of transcription from the human GNAS1 gene. J Med Genet. 1994;31(8):607–14.PubMedPubMedCentralGoogle Scholar
  17. Chase LR, Aurbach GD. Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin. Science. 1968;159(3814):545–7.PubMedGoogle Scholar
  18. Chase LR, Melson GL, Aurbach GD. Pseudohypoparathyroidism: defective excretion of 3′,5′-AMP in response to parathyroid hormone. J Clin Invest. 1969;48(10):1832–44.PubMedPubMedCentralGoogle Scholar
  19. Chen M, Gavrilova O, Liu J, Xie T, Deng C, Nguyen AT, et al. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proc Natl Acad Sci USA. 2005;102(20):7386–91.PubMedPubMedCentralGoogle Scholar
  20. Chillambhi S, Turan S, Hwang DY, Chen HC, Jüppner H, Bastepe M. Deletion of the noncoding GNAS antisense transcript causes pseudohypoparathyroidism type Ib and biparental defects of GNAS methylation in cis. J Clin Endocrinol Metab. 2010;95(8):3993–4002.PubMedPubMedCentralGoogle Scholar
  21. Chotalia M, Smallwood SA, Ruf N, Dawson C, Lucifero D, Frontera M, et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 2009;23(1):105–17.PubMedPubMedCentralGoogle Scholar
  22. Coombes C, Arnaud P, Gordon E, Dean W, Coar EA, Williamson CM, et al. Epigenetic properties and identification of an imprint mark in the Nesp-Gnasxl domain of the mouse Gnas imprinted locus. Mol Cell Biol. 2003;23(16):5475–88.PubMedPubMedCentralGoogle Scholar
  23. Crawford JA, Mutchler KJ, Sullivan BE, Lanigan TM, Clark MS, Russo AF. Neural expression of a novel alternatively spliced and polyadenylated Gs alpha transcript. J Biol Chem. 1993;268(13):9879–85.PubMedGoogle Scholar
  24. Davies SJ, Hughes HE. Imprinting in Albright’s hereditary osteodystrophy. J Med Genet. 1993;30(2):101–3.PubMedPubMedCentralGoogle Scholar
  25. Drezner M, Neelon FA, Lebovitz HE. Pseudohypoparathyroidism type II: a possible defect in the reception of the cyclic AMP signal. N Engl J Med. 1973;289(20):1056–60.PubMedGoogle Scholar
  26. Eaton SA, Williamson CM, Ball ST, Beechey CV, Moir L, Edwards J, et al. New mutations at the imprinted Gnas cluster show gene dosage effects of Gsalpha in postnatal growth and implicate XLalphas in bone and fat metabolism but not in suckling. Mol Cell Biol. 2012;32(5):1017–29.PubMedPubMedCentralGoogle Scholar
  27. Elli FM, de Santis L, Peverelli E. Autosomal dominant pseudohypoparathyroidism type Ib: a novel inherited deletion ablating STX16 causes loss of imprinting at the A/B DMR. J Clin Endocrinol Metab. 2014;99:E724–8.PubMedGoogle Scholar
  28. Frame B, Hanson CA, Frost HM, Block M, Arnstein AR. Renal resistance to parathyroid hormone with osteitis fibrosa: “pseudohypohyperparathyroidism”. Am J Med. 1972;52(3):311–21.PubMedGoogle Scholar
  29. Freson K, Jaeken J, Van Helvoirt M, de Zegher F, Wittevrongel C, Thys C, et al. Functional polymorphisms in the paternally expressed XLalphas and its cofactor ALEX decrease their mutual interaction and enhance receptor-mediated cAMP formation. Hum Mol Genet. 2003;12(10):1121–30.PubMedGoogle Scholar
  30. Gejman PV, Weinstein LS, Martinez M, Spiegel AM, Cao Q, Hsieh WT, Hoehe MR, Gershon ES. Genetic mapping of the Gs-alpha subunit gene (GNAS1) to the distal long arm of chromosome 20 using a polymorphism detected by denaturing gradient gel electrophoresis. Genomics. 1991;9:782–3.PubMedGoogle Scholar
  31. Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS, Wand G, et al. A mouse model of albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the Gnas gene. Endocrinology. 2005;146(11):4697–709.PubMedGoogle Scholar
  32. Gopal Rao VVN, Schnittger S, Hansmann I. G protein Gs-alpha (GNAS1), the probable candidate gene for Albright hereditary osteodystrophy, is assigned to human chromosome 20q12-q13.2. Genomics. 1991;10:257–61.Google Scholar
  33. Happle R. The McCune-Albright syndrome: a lethal gene surviving by mosaicism. Clin Genet. 1986;29(4):321–4.PubMedGoogle Scholar
  34. Hayward BE, Bonthron DT. An imprinted antisense transcript at the human GNAS1 locus. Hum Mol Genet. 2000;9(5):835–41.PubMedGoogle Scholar
  35. Hayward BE, Kamiya M, Strain L, Moran V, Campbell R, Hayashizaki Y, et al. The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc Natl Acad Sci USA. 1998a;95(17):10038–43.PubMedPubMedCentralGoogle Scholar
  36. Hayward BE, Moran V, Strain L, Bonthron DT. Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc Natl Acad Sci USA. 1998b;95(26):15475–80.PubMedPubMedCentralGoogle Scholar
  37. Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A, et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest. 2001;107(6):R31–6.PubMedPubMedCentralGoogle Scholar
  38. He Q, Zhu Y, Corbin BA, Plagge A, Bastepe M. The G protein alpha subunit variant XLalphas promotes inositol 1,4,5-trisphosphate signaling and mediates the renal actions of parathyroid hormone in vivo. Sci Signal. 2015;8(391):ra84.PubMedPubMedCentralGoogle Scholar
  39. Iiri THP, Nakamoto JM, van Dop C, Bourne HR. Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature. 1994;371(6493):164–8.PubMedGoogle Scholar
  40. Ishikawa Y, Bianchi C, Nadal-Ginard B, Homcy CJ. Alternative promoter and 5′ exon generate a novel Gs alpha mRNA. J Biol Chem. 1990;265(15):8458–62.PubMedGoogle Scholar
  41. Linglart ABM, Jüppner H. Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epi-genetic changes at the GNAS locus. Clin Endocrinol. 2007;67(6):822–31.Google Scholar
  42. Kaplan FS, Shore EM. Progressive osseous heteroplasia. J Bone Miner Res Off J Am Soc Bone Miner Res. 2000;15(11):2084–94.Google Scholar
  43. Kehlenbach RHMJ, Huttner WB. XL alpha s is a new type of G protein. Nature. 1994;372(6508):804–9.PubMedGoogle Scholar
  44. Kim SJGD, Hanna GL, Leventhal BL, Cook Jr EH. Deletion polymorphism in the coding region of the human NESP55 alternative transcript of GNAS1. Mol Cell Probes. 2000;14(4):191–4.PubMedGoogle Scholar
  45. Klemke M, Pasolli HA, Kehlenbach RH, Offermanns S, Schultz G, Huttner WB. Characterization of the extra-large G protein alpha-subunit XLalphas. II. Signal transduction properties. J Biol Chem. 2000;275(43):33633–40.PubMedGoogle Scholar
  46. Klemke M, Kehlenbach RH, Huttner WB. Two overlapping reading frames in a single exon encode interacting proteins – a novel way of gene usage. EMBO J. 2001;20(14):3849–60.PubMedPubMedCentralGoogle Scholar
  47. Kozasa T, Itoh H, Tsukamoto T, Kaziro Y. Isolation and characterization of the human Gs alpha gene. Proc Natl Acad Sci USA. 1988;85(7):2081–5.PubMedPubMedCentralGoogle Scholar
  48. Krechowec SO, Burton KL, Newlaczyl AU, Nunn N, Vlatkovic N, Plagge A. Postnatal changes in the expression pattern of the imprinted signalling protein XLalphas underlie the changing phenotype of deficient mice. PLoS One. 2012;7(1):e29753.PubMedPubMedCentralGoogle Scholar
  49. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340(6236):692–6.PubMedGoogle Scholar
  50. Landis CA, Harsh G, Lyons J, Davis RL, McCormick F, Bourne HR. Clinical characteristics of acromegalic patients whose pituitary tumors contain mutant Gs protein. J Clin Endocrinol Metab. 1990;71(6):1416–20.PubMedGoogle Scholar
  51. Levine MA, Jap TS, Mauseth RS, Downs RW, Spiegel AM. Activity of the stimulatory guanine nucleotide-binding protein is reduced in erythrocytes from patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism: biochemical, endocrine, and genetic analysis of Albright’s hereditary osteodystrophy in six kindreds. J Clin Endocrinol Metab. 1986;62(3):497–502.PubMedGoogle Scholar
  52. Levine MA, Ahn TG, Klupt SF, Kaufman KD, Smallwood PM, Bourne HR, et al. Genetic deficiency of the alpha subunit of the guanine nucleotide-binding protein Gs as the molecular basis for Albright hereditary osteodystrophy. Proc Natl Acad Sci USA. 1988;85(2):617–21.PubMedPubMedCentralGoogle Scholar
  53. Levine MA, Modi WS, O’Brien SJ. Mapping of the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase (GNAS1) to 20q13.2-q13.3 in human by in situ hybridization. Genomics. 1991;11:478–9.PubMedGoogle Scholar
  54. Linglart A, Gensure RC, Olney RC, Jüppner H, Bastepe M. A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet. 2005;76(5):804–14.PubMedPubMedCentralGoogle Scholar
  55. Linglart A, Mahon MJ, Kerachian MA, Berlach DM, Hendy GN, Jüppner H, et al. Coding GNAS mutations leading to hormone resistance impair in vitro agonist- and cholera toxin-induced adenosine cyclic 3′,5′-monophosphate formation mediated by human XLalphas. Endocrinology. 2006;147(5):2253–62.PubMedGoogle Scholar
  56. Liu JNJ, Weinstein LS. Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB. Hum Mol Genet. 2005;14:95–102.PubMedGoogle Scholar
  57. Liu J, Litman D, Rosenberg MJ, Yu S, Biesecker LG, Weinstein LS. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest. 2000;106(9):1167–74.PubMedPubMedCentralGoogle Scholar
  58. Liu Z, Turan S, Wehbi VL, Vilardaga JP, Bastepe M. Extra-long Galphas variant XLalphas protein escapes activation-induced subcellular redistribution and is able to provide sustained signaling. J Biol Chem. 2011a;286(44):38558–69.PubMedPubMedCentralGoogle Scholar
  59. Liu Z, Segawa H, Aydin C, Reyes M, Erben RG, Weinstein LS, et al. Transgenic overexpression of the extra-large Gsalpha variant XLalphas enhances Gsalpha-mediated responses in the mouse renal proximal tubule in vivo. Endocrinology. 2011b;152(4):1222–33.PubMedPubMedCentralGoogle Scholar
  60. Lumbroso S, Paris F, Sultan C, European CS. Activating Gsalpha mutations: analysis of 113 patients with signs of McCune-Albright syndrome – a European Collaborative Study. J Clin Endocrinol Metab. 2004;89(5):2107–13.PubMedGoogle Scholar
  61. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, et al. Two G protein oncogenes in human endocrine tumors. Science. 1990;249(4969):655–9.PubMedGoogle Scholar
  62. Makita N, Sato J, Rondard P, Fukamachi H, Yuasa Y, Aldred MA, Hashimoto M, Fujita T, Iiri T. Human G(S-alpha) mutant causes pseudohypoparathyroidism type Ia/neonatal diarrhea, a potential cell-specific role of the palmitoylation cycle. Proc Natl Acad Sci. 2007;104:17424–9.PubMedPubMedCentralGoogle Scholar
  63. Mantovani G, Ballare E, Giammona E, Beck-Peccoz P, Spada A. The gsalpha gene: predominant maternal origin of transcription in human thyroid gland and gonads. J Clin Endocrinol Metab. 2002;87(10):4736–40.PubMedGoogle Scholar
  64. Mariot V, Wu JY, Aydin C, Mantovani G, Mahon MJ, Linglart A, et al. Potent constitutive cyclic AMP-generating activity of XLalphas implicates this imprinted GNAS product in the pathogenesis of McCune-Albright syndrome and fibrous dysplasia of bone. Bone. 2011;48(2):312–20.PubMedGoogle Scholar
  65. McCune DJ, Bruch H. Progress in pediatrics: osteodystrophia fibrosa. Am J Dis Child. 1937;54:806–48.Google Scholar
  66. Michienzi S, Cherman N, Holmbeck K, Funari A, Collins MT, Bianco P, et al. GNAS transcripts in skeletal progenitors: evidence for random asymmetric allelic expression of Gs alpha. Hum Mol Genet. 2007;16(16):1921–30.PubMedGoogle Scholar
  67. Nakamoto JM, Zimmerman D, Jones EA, Loke KY, Siddiq K, Donlan MA, et al. Concurrent hormone resistance (pseudohypoparathyroidism type Ia) and hormone independence (testotoxicosis) caused by a unique mutation in the G alpha s gene. Biochem Mol Med. 1996;58(1):18–24.PubMedGoogle Scholar
  68. Northup JK, Sternweis PC, Smigel MD, Schleifer LS, Ross EM, Gilman AG. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA. 1980;77(11):6516–20.PubMedPubMedCentralGoogle Scholar
  69. Novotny J, Svoboda P. The long (Gs(alpha)-L) and short (Gs(alpha)-S) variants of the stimulatory guanine nucleotide-binding protein. Do they behave in an identical way? J Mol Endocrinol. 1998;20(2):163–73.PubMedGoogle Scholar
  70. Pasolli HA, Huttner WB. Expression of the extra-large G protein alpha-subunit XLalphas in neuroepithelial cells and young neurons during development of the rat nervous system. Neurosci Lett. 2001;301(2):119–22.PubMedGoogle Scholar
  71. Pasolli HA, Klemke M, Kehlenbach RH, Wang Y, Huttner WB. Characterization of the extra-large G protein alpha-subunit XLalphas. I. Tissue distribution and subcellular localization. J Biol Chem. 2000;275(43):33622–32.PubMedGoogle Scholar
  72. Patten JL, Levine MA. Immunochemical analysis of the alpha-subunit of the stimulatory G-protein of adenylyl cyclase in patients with Albright’s hereditary osteodystrophy. J Clin Endocrinol Metab. 1990;71(5):1208–14.PubMedGoogle Scholar
  73. Patten JL, Johns DR, Valle D, Eil C, Gruppuso PA, Steele G, et al. Mutation in the gene encoding the stimulatory G protein of adenylate cyclase in Albright’s hereditary osteodystrophy. N Engl J Med. 1990;322(20):1412–9.PubMedGoogle Scholar
  74. Plagge A, Gordon E, Dean W, Boiani R, Cinti S, Peters J, et al. The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat Genet. 2004;36(8):818–26.PubMedGoogle Scholar
  75. Plagge A, Isles AR, Gordon E, Humby T, Dean W, Gritsch S, et al. Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol. 2005;25(8):3019–26.PubMedPubMedCentralGoogle Scholar
  76. Pohl SL, Birnbaumer L, Rodbell M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties. J Biol Chem. 1971;246(6):1849–56.PubMedGoogle Scholar
  77. Puzhko SGC, Kerachian MA, Canaff L, Misra M, Jüppner H, Bastepe M, Hendy GN. Parathyroid hormone signaling via Gαs is selectively inhibited by an NH(2)-terminally truncated Gαs: implications for pseudohypoparathyroidism. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(10):2473–85.Google Scholar
  78. Richard N, Abeguile G, Coudray N, Mittre H, Gruchy N, Andrieux J, Cathebras P, Kottler ML. A new deletion ablating NESP55 causes loss of maternal imprint of A/B GNAS and autosomal dominant pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab. 2012;97:E863–7.Google Scholar
  79. Rodbell M, Krans HM, Pohl SL, Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. 3. Binding of glucagon: method of assay and specificity. J Biol Chem. 1971;246(6):1861–71.PubMedGoogle Scholar
  80. Sakamoto A, Liu J, Greene A, Chen M, Weinstein LS. Tissue-specific imprinting of the G protein Gsalpha is associated with tissue-specific differences in histone methylation. Hum Mol Genet. 2004;13(8):819–28.PubMedGoogle Scholar
  81. Shore EM, Ahn J, Jan de Beur S, Li M, Xu M, Gardiner RJM, Zasloff MA, Whyte MP, Levine MA, Kaplan FS. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N Eng J Med. 2002;346:99–106.Google Scholar
  82. Sparkes RS, Cohn VH, Mohandas T, Zollman S, Cire-Eversole P, Amatruda TT, Reed RR, Lochrie MA, Simon MI. Mapping of genes encoding the subunits of guanine nucleotide-binding protein (G-proteins) in humans. Cytogenet Cell Genet. 1987;46:696.Google Scholar
  83. Sternweis PC, Northup JK, Smigel MD, Gilman AG. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981;256(22):11517–26.PubMedGoogle Scholar
  84. Swaroop A, Agarwal N, Gruen JR, Bick D, Weissman SM. Differential expression of novel Gs alpha signal transduction protein cDNA species. Nucleic Acids Res. 1991;19(17):4725–9.PubMedPubMedCentralGoogle Scholar
  85. Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, signaling, and physiological functions of G-proteins. J Mol Biol. 2016;428(19):3850–68.PubMedPubMedCentralGoogle Scholar
  86. Turan S, Bastepe M. GNAS spectrum of disorders. Curr Osteoporos Rep. 2015;13(3):146–58.PubMedPubMedCentralGoogle Scholar
  87. Walseth TF, Zhang HJ, Olson LK, Schroeder WA, Robertson RP. Increase in Gs and cyclic AMP generation in HIT cells. Evidence that the 45-kDa alpha-subunit of Gs has greater functional activity than the 52-kDa alpha-subunit. J Biol Chem. 1989;264(35):21106–11.PubMedGoogle Scholar
  88. Weinstein LS, Gejman PV, Friedman E, Kadowaki T, Collins RM, Gershon ES, et al. Mutations of the Gs alpha-subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel electrophoresis. Proc Natl Acad Sci USA. 1990;87(21):8287–90.PubMedPubMedCentralGoogle Scholar
  89. Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev. 2001;22(5):675–705.PubMedGoogle Scholar
  90. Weinstein LS, Liu J, Sakamoto A, Xie T, Chen M. Minireview: GNAS: normal and abnormal functions. Endocrinology. 2004;145(12):5459–64.PubMedGoogle Scholar
  91. Weiss UIR, Eder S, Lovisetti-Scamihorn P, Bauer R, Fischer-Colbrie R. Neuroendocrine secretory protein 55 (NESP55): alternative splicing onto transcripts of the GNAS gene and posttranslational processing of a maternally expressed protein. Neuroendocrinology. 2000;71(3):177–86.PubMedGoogle Scholar
  92. Williamson CM, Ball ST, Nottingham WT, Skinner JA, Plagge A, Turner MD, et al. A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nat Genet. 2004;36(8):894–9.PubMedGoogle Scholar
  93. Williamson CM, Turner MD, Ball ST, Nottingham WT, Glenister P, Fray M, et al. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet. 2006;38(3):350–5.PubMedGoogle Scholar
  94. Williamson CM, Ball ST, Dawson C, Mehta S, Beechey CV, Fray M, et al. Uncoupling antisense-mediated silencing and DNA methylation in the imprinted Gnas cluster. PLoS Genet. 2011;7(3):e1001347.PubMedPubMedCentralGoogle Scholar
  95. Wroe SFKG, Skinner JA, Bodle D, Ball ST, Beechey CV, Peters J, Williamson CM. An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus. Proc Natl Acad Sci USA. 2000;97(7):3342–6.PubMedPubMedCentralGoogle Scholar
  96. Yang I, Park S, Ryu M, Woo J, Kim S, Kim J, et al. Characteristics of gsp-positive growth hormone-secreting pituitary tumors in Korean acromegalic patients. Eur J Endocrinol. 1996;134(6):720–6.PubMedGoogle Scholar
  97. Yu S, Yu D, Lee E, Eckhaus M, Lee R, Corria Z, et al. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsalpha) knockout mice is due to tissue-specific imprinting of the gsalpha gene. Proc Natl Acad Sci USA. 1998;95(15):8715–20.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pediatrics Pediatric Endocrinology and DiabetesMarmara University HospitalUstkaynarca/Pendik-IstanbulTurkey
  2. 2.Department of Medicine, Harvard Medical School and Endocrine UnitMassachusetts General HospitalBostonUSA