Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

GPR55

  • A. C. Simcocks
  • L. O’Keefe
  • D. H. Hryciw
  • M. L. Mathai
  • D. S. Hutchinson
  • Andrew J. McAinch
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101626

Synonyms

Historical Background

G protein-coupled receptor 55 (GPR55) was first cloned in 1999 and is a 319 amino acid seven transmembrane G protein-coupled receptor (GPCR) that is mapped to chromosome 2q37 (human) (Sawzdargo et al. 1999). It displays features common with other Family A GPCRs including a short extracellular N-terminal and C-terminal tail and contains two highly conserved extracellular cysteine residues that form disulfide bonds to help stabilize the receptor structure. Glycosylation sites in its N-terminus are present, while its intracellular loops and C-terminal tail have a number of potential phosphorylation sites. Orthologues for GPR55 have been found in a number of mammalian species including rat, mouse, dog, cow, chimpanzee, and human (Baker et al. 2006) (Figs. 1 and 2).
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

A.C. Simcocks was supported by Australian Rotary Health and the Rotary Club of Ballarat South.

D.S. Hutchinson is supported by a National Health and Medical Research Council of Australia Career Development Fellowship.

References

  1. Baker D, Pryce G, Davies WL, Hiley CR. In silico patent searching reveals a new cannabinoid receptor. Trends Pharmacol Sci. 2006;27(1):1–4.PubMedCrossRefGoogle Scholar
  2. Balenga NA, Aflaki E, Kargl J, Platzer W, Schroder R, Blattermann S, Kostenis E, Brown AJ, Heinemann A, Waldhoer M. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res. 2011;21(10):1452–69.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Balenga NA, Martinez-Pinilla E, Kargl J, Schroder R, Peinhaupt M, Platzer W, Balint Z, Zamarbide M, Dopeso-Reyes IG, Ricobaraza A, Perez-Ortiz JM, Kostenis E, Waldhoer M, Heinemann A, Franco R. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br J Pharmacol. 2014;171(23):5387–406.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chiurchiu V, Lanuti M, De Bardi M, Battistini L, Maccarrone M. The differential characterization of GPR55 receptor in human peripheral blood reveals a distinctive expression in monocytes and NK cells and a proinflammatory role in these innate cells. Int Immunol. 2015;27(3):153–60.PubMedCrossRefGoogle Scholar
  5. Henstridge CM, Balenga NA, Ford LA, Ross RA, Waldhoer M, Irving AJ. The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J : Off Publ Fed Am Soc Exp Biol. 2009;23(1):183–93.CrossRefGoogle Scholar
  6. Henstridge CM, Balenga NA, Kargl J, Andradas C, Brown AJ, Irving A, Sanchez C, Waldhoer M. Minireview: recent developments in the physiology and pathology of the lysophosphatidylinositol-sensitive receptor GPR55. Mol Endocrinol. 2011;25(11):1835–48.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Henstridge CM, Balenga NA, Schroder R, Kargl JK, Platzer W, Martini L, Arthur S, Penman J, Whistler JL, Kostenis E, Waldhoer M, Irving AJ. GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol. 2010;160(3):604–14.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Jarai Z, Wagner JA, Varga K, Lake KD, Compton DR, Martin BR, Zimmer AM, Bonner TI, Buckley NE, Mezey E, Razdan RK, Zimmer A, Kunos G. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc Natl Acad Sci U S A. 1999;96(24):14136–41.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Jenkin KA, McAinch AJ, Grinfeld E, Hryciw DH. Role for cannabinoid receptors in human proximal tubular hypertrophy. Cell Physiol Biochem : Int J Exp Cell Physiol Biochem Pharmacol. 2010;26(6):879–86.CrossRefGoogle Scholar
  10. Johns DG, Behm DJ, Walker DJ, Ao Z, Shapland EM, Daniels DA, Riddick M, Dowell S, Staton PC, Green P, Shabon U, Bao W, Aiyar N, Yue TL, Brown AJ, Morrison AD, Douglas SA. The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. Br J Pharmacol. 2007;152(5):825–31.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS, Abood ME. Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem. 2009;284(43):29817–27.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Kargl J, Andersen L, Hasenohrl C, Feuersinger D, Stancic A, Fauland A, Magnes C, El-Heliebi A, Lax S, Uranitsch S, Haybaeck J, Heinemann A, Schicho R. GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis. Br J Pharmacol. 2016;173(1):142–54.PubMedCrossRefGoogle Scholar
  13. Kargl J, Balenga N, Parzmair GP, Brown AJ, Heinemann A, Waldhoer M. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J Biol Chem. 2012;287(53):44234–48.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kargl J, Brown AJ, Andersen L, Dorn G, Schicho R, Waldhoer M, Heinemann A. A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function. J Pharmacol Exp Ther. 2013;346(1):54–66.PubMedCrossRefGoogle Scholar
  15. Kotsikorou E, Madrigal KE, Hurst DP, Sharir H, Lynch DL, Heynen-Genel S, Milan LB, Chung TD, Seltzman HH, Bai Y, Caron MG, Barak L, Abood ME, Reggio PH. Identification of the GPR55 agonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry. 2011;50(25):5633–47.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kotsikorou E, Sharir H, Shore DM, Hurst DP, Lynch DL, Madrigal KE, Heynen-Genel S, Milan LB, Chung TD, Seltzman HH, Bai Y, Caron MG, Barak LS, Croatt MP, Abood ME, Reggio PH. Identification of the GPR55 antagonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry. 2013;52(52):9456–69.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Kremshofer J, Siwetz M, Berghold VM, Lang I, Huppertz B, Gauster M. A role for GPR55 in human placental venous endothelial cells. Histochem Cell Biol. 2015;144(1):49–58.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A. 2008;105(7):2699–704.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Leyva-Illades D, Demorrow S. Orphan G protein receptor GPR55 as an emerging target in cancer therapy and management. Cancer Manag Res. 2013;5:147–55.PubMedPubMedCentralGoogle Scholar
  20. Li K, Feng JY, Li YY, Yuece B, Lin XH, Yu LY, Li YN, Feng YJ, Storr M. Anti-inflammatory role of cannabidiol and O-1602 in cerulein-induced acute pancreatitis in mice. Pancreas. 2013a;42(1):123–9.PubMedCrossRefGoogle Scholar
  21. Li K, Fichna J, Schicho R, Saur D, Bashashati M, Mackie K, Li Y, Zimmer A, Goke B, Sharkey KA, Storr M. A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. Neuropharmacology. 2013b;71:255–63.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lin XH, Wei DD, Wang HC, Wang B, Bai CY, Wang YQ, Li GE, Li HP, Ren XQ. Role of orphan G protein-coupled receptor 55 in diabetic gastroparesis in mice. Sheng Li Xue Bao : [Acta Physiol Sin]. 2014;66(3):332–40.Google Scholar
  23. Lin XH, Yuece B, Li YY, Feng YJ, Feng JY, Yu LY, Li K, Li YN, Storr M. A novel CB receptor GPR55 and its ligands are involved in regulation of gut movement in rodents. Neurogastroenterol Motil : Off J Eur Gastrointest Motil Soc. 2011;23(9):862–e342.CrossRefGoogle Scholar
  24. Martinez-Pinilla E, Reyes-Resina I, Onatibia-Astibia A, Zamarbide M, Ricobaraza A, Navarro G, Moreno E, Dopeso-Reyes IG, Sierra S, Rico AJ, Roda E, Lanciego JL, Franco R. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol. 2014;261:44–52.PubMedCrossRefGoogle Scholar
  25. McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM, Bradshaw HB. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci. 2010;11:44.PubMedPubMedCentralCrossRefGoogle Scholar
  26. McHugh D, Page J, Dunn E, Bradshaw HB. Delta(9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br J Pharmacol. 2012;165(8):2414–24.PubMedPubMedCentralCrossRefGoogle Scholar
  27. McKillop AM, Moran BM, Abdel-Wahab YH, Flatt PR. Evaluation of the insulin releasing and antihyperglycaemic activities of GPR55 lipid agonists using clonal beta-cells, isolated pancreatic islets and mice. Br J Pharmacol. 2013;170(5):978–90.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Meadows A, Lee JH, Wu CS, Wei Q, Pradhan G, Yafi M, Lu HC, Sun Y. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity. Int J Obes. 2016;40(3):417–24.CrossRefGoogle Scholar
  29. Moreno-Navarrete JM, Catalan V, Whyte L, Diaz-Arteaga A, Vazquez-Martinez R, Rotellar F, Guzman R, Gomez-Ambrosi J, Pulido MR, Russell WR, Imbernon M, Ross RA, Malagon MM, Dieguez C, Fernandez-Real JM, Fruhbeck G, Nogueiras R. The L-alpha-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes. 2012;61(2):281–91.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Moreno E, Andradas C, Medrano M, Caffarel MM, Perez-Gomez E, Blasco-Benito S, Gomez-Canas M, Pazos MR, Irving AJ, Lluis C, Canela EI, Fernandez-Ruiz J, Guzman M, McCormick PJ, Sanchez C. Targeting CB2-GPR55 receptor heteromers modulates cancer cell signaling. J Biol Chem. 2014;289(32):21960–72.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Oka S, Kimura S, Toshida T, Ota R, Yamashita A, Sugiura T. Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. J Biochem. 2010;147(5):671–8.PubMedCrossRefGoogle Scholar
  32. Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun. 2007;362(4):928–34.PubMedCrossRefGoogle Scholar
  33. Omasits U, Ahrens CH, Muller S, Wollscheid B. Protter: interactivate protein feature visualization and integration with experimental proteomic. Bioinformatics. 2013;30(6):884–86.PubMedCrossRefGoogle Scholar
  34. Overton HA, Fyfe MC, Reynet C. GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity. Br J Pharmacol. 2008;153(Suppl 1):S76–81.PubMedGoogle Scholar
  35. Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB(1) and CB(2). Pharmacol Rev. 2010;62(4):588–631.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Romero-Zerbo SY, Rafacho A, Diaz-Arteaga A, Suarez J, Quesada I, Imbernon M, Ross RA, Dieguez C, Rodriguez de Fonseca F, Nogueiras R, Nadal A, Bermudez-Silva FJ. A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J Endocrinol. 2011;211(2):177–85.PubMedCrossRefGoogle Scholar
  37. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152(7):1092–101.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Sawzdargo M, Nguyen T, Lee DK, Lynch KR, Cheng R, Heng HH, George SR, O'Dowd BF. Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res. 1999;64(2):193–8.PubMedCrossRefGoogle Scholar
  39. Schicho R, Bashashati M, Bawa M, McHugh D, Saur D, Hu HM, Zimmer A, Lutz B, Mackie K, Bradshaw HB, McCafferty DM, Sharkey KA, Storr M. The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment. Inflamm Bowel Dis. 2011;17(8):1651–64.PubMedCrossRefGoogle Scholar
  40. Stancic A, Jandl K, Hasenohrl C, Reichmann F, Marsche G, Schuligoi R, Heinemann A, Storr M, Schicho R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil Off J Euro Gastrointest Motil Soc. 2015;27(10):1432–45.CrossRefGoogle Scholar
  41. Staton PC, Hatcher JP, Walker DJ, Morrison AD, Shapland EM, Hughes JP, Chong E, Mander PK, Green PJ, Billinton A, Fulleylove M, Lancaster HC, Smith JC, Bailey LT, Wise A, Brown AJ, Richardson JC, Chessell IP. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain. 2008;139(1):225–36.PubMedCrossRefGoogle Scholar
  42. Wagner JA, Varga K, Jarai Z, Kunos G. Mesenteric vasodilation mediated by endothelial anandamide receptors. Hypertension. 1999;33(1 Pt 2):429–34.PubMedCrossRefGoogle Scholar
  43. Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M, Malli R, Graier WF. Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci. 2008;121(Pt 10):1704–17.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, Ross RA, Rogers MJ. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A. 2009;106(38):16511–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. C. Simcocks
    • 1
  • L. O’Keefe
    • 1
  • D. H. Hryciw
    • 1
    • 2
  • M. L. Mathai
    • 1
    • 3
  • D. S. Hutchinson
    • 4
  • Andrew J. McAinch
    • 5
  1. 1.Centre for Chronic Diseases, College of Health and BiomedicineVictoria University, St Albans CampusMelbourneAustralia
  2. 2.School of Natural SciencesGriffith UniversityNathanAustralia
  3. 3.The Florey Institute for Neuroscience and Mental HealthThe University of MelbourneParkvilleAustralia
  4. 4.Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  5. 5.Centre for Chronic Diseases, College of Health and Biomedicine, Australian Institute for Musculoskeletal ScienceVictoria University, St Albans CampusMelbourneAustralia