Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Yi Wang
  • Po Sing LeungEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101625


Historical Background

G-protein-coupled receptors (GPCRs), also known as 7-transmemebrane domain receptors (7-TM receptors), have about 850 predicted members that act as cell surface messengers in response to extracellular signals, thus triggering intracellular signaling events (Kroeze et al. 2003). GPCRs are subject to activation by ligands, lights, hormones, neurotransmitters, odorants, or drug molecules, regulating various physiological functions including, but not limiting to, lipid metabolism and inflammation (Oh et al. 2010; Talukdar et al. 2011). Among these members, GPR120 was identified by searching the databases of rhodopsin-like GPCRs that belongs to the rhodopsin family of GPCRs and is conservative in human and mouse (Fredriksson et al. 2003)....

This is a preview of subscription content, log in to check access.


  1. Fredriksson R, Höglund PJ, Gloriam DE, Lagerström MC, Schiöth HB. Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett. 2003;554(3):381–8.PubMedCrossRefGoogle Scholar
  2. Gong Z, Yoshimura M, Aizawa S. G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. Am J Physiol Endocrinol Metab. 2014;306(1):E28–35.PubMedCrossRefGoogle Scholar
  3. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11:90–4.PubMedCrossRefGoogle Scholar
  4. Hudson BD, Shimpukade B, Mackenzie AE, Butcher AJ, Pediani JD, et al. The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol. 2013;84:710–25.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ichimura A, Hirasawa A, Godefroy OP, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 2012;483:350–4.PubMedCrossRefGoogle Scholar
  6. Kazakos K. Incretin effect: GLP-1, GIP, DPP4. Diabetes Res Clin Pract. 2011;93:S32–6.CrossRefGoogle Scholar
  7. Kroeze WK, Sheffler DJ, Roth BL. G-protein-coupled receptors at a glance. J Cell Sci. 2003;116:4867–9.PubMedCrossRefGoogle Scholar
  8. Marzuillo P, Grandone A, Conte M, Capuano F, Cirillo G, et al. Novel association between a nonsynonymous variant (R270H) of the G-protein-coupled receptor 120 and liver injury in children and adolescents with obesity. J Pediatr Gastroenterol Nutr. 2014;59:472–5.PubMedCrossRefGoogle Scholar
  9. Miyauchi S, Hirasawa A, Iga T, Liu N, Itsubo C, et al. Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn Schmiedeberg's Arch Pharmacol. 2009;379:427–34.CrossRefGoogle Scholar
  10. Mobraten K, Haug TM, Kleiveland CR, et al. Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Dis. 2013;12:101.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an ω-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Oh DY, Walenta E, Akiyama TE, et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med. 2014;20:942–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T, et al. CD36- and GPR120-mediated Ca2+signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology. 2014;146:995–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Raptis DA, Limani P, Jang JH, Ungethum U, Tschuor C, et al. GPR120 on Kupffer cells mediates hepatoprotective effects of ω3-fatty acids. J Hepatol. 2014;60:625–32.PubMedCrossRefGoogle Scholar
  15. Talukdar S, Olefsky JM, Osborn O. Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci. 2011;32(9):543–50.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedeberg's Arch Pharmacol. 2008;377:523–7.CrossRefGoogle Scholar
  17. Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab. 2012;16:122–34.PubMedCrossRefGoogle Scholar
  18. Watterson KR, Hudson BD, Ulven T, Milligan G. Treatment of type 2 diabetes by free fatty acid receptor agonists. Front Endocrinol. 2014;5:137.CrossRefGoogle Scholar
  19. Yan Y, Jiang W, Spinetti T, Tardivel A, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38(6):1154–63.PubMedCrossRefGoogle Scholar
  20. Zhang D, So WY, Wang Y, Wu SY, Cheng Q, Leung PS. Insulinotropic effects of GPR120 agonists are altered in obese non-diabetic and diabetic states. Clin Sci. 2016;131:247–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongShatin, New TerritoriesChina