Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Dyrk1a

  • Francisco J. Tejedor
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101613

Synonyms

Historical Background

DYRK1A is a member of the Mnb/DYRK subfamily of protein kinases, which falls within the CMGC Ser/Thr family to which cyclin-dependent kinases (CDKs), CDC-like kinases (CLKs), glycogen synthase kinase (GSK3), and mitogen-activated protein kinase (MAPK) also belong. The founding member of the Mnb/DYRK subfamily in multicellular organisms was identified in Drosophila melanogaster (Dm) and due to the reduced brain size associated with its loss of function it was named minibrain (mnb). This phenotype is caused by altered proliferation during brain development, suggesting a key function for this kinase in the regulation of neural proliferation and neurogenesis (Tejedor et al. 1995). In addition, mnbmutant flies have behavioral defects, indicative of alterations to neuronal...

This is a preview of subscription content, log in to check access.

References

  1. Altafaj X, Dierssen M, Baamonde C, Marti E, Visa J, Guimera J, et al. Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum Mol Genet. 2001;10(18):1915–23.CrossRefPubMedGoogle Scholar
  2. Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: Evolutionary relationships, biochemical properties, and functional roles. FASEB J. 2011;25(2):449–62.CrossRefPubMedGoogle Scholar
  3. Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X, et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature. 2006;441(7093):595–600.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Becker W, Sippl W. Activation, regulation, and inhibition of DYRK1A. FEBS J. 2011;278(2):246–56.CrossRefPubMedGoogle Scholar
  5. Becker W, Soppa U, Tejedor FJ. DYRK1A: a potential drug target for multiple Down syndrome neuropathologies. CNS Neurol Disord Drug Targets. 2014;13(1):26–33.CrossRefPubMedGoogle Scholar
  6. Chen CK, Bregere C, Paluch J, Lu JF, Dickman DK, Chang KT. Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase. Nat Commun. 2014;5:4246.PubMedPubMedCentralCrossRefGoogle Scholar
  7. da Costa Martins PA, Salic K, Gladka MM, Armand AS, Leptidis S, el Azzouzi H, et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol. 2010;12(12):1220–7.CrossRefPubMedGoogle Scholar
  8. Degoutin JL, Milton CC, Yu E, Tipping M, Bosveld F, Yang L, et al. Riquiqui and minibrain are regulators of the hippo pathway downstream of Dachsous. Nat Cell Biol. 2013;15(10):1176–85.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ferron SR, Pozo N, Laguna A, Aranda S, Porlan E, Moreno M, et al. Regulated segregation of kinase Dyrk1A during asymmetric neural stem cell division is critical for EGFR-mediated biased signaling. Cell Stem Cell. 2010;7(3):367–79.CrossRefPubMedGoogle Scholar
  10. Fotaki V, Dierssen M, Alcantara S, Martinez S, Marti E, Casas C, et al. Dyrk1A haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol Cell Biol. 2002;22(18):6636–47.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Guimera J, Casas C, Pucharcos C, Solans A, Domenech A, Planas AM, et al. A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum Mol Genet. 1996;5(9):1305–10.CrossRefPubMedGoogle Scholar
  12. Hammerle B, Ulin E, Guimera J, Becker W, Guillemot F, Tejedor FJ. Transient expression of Mnb/Dyrk1a couples cell cycle exit and differentiation of neuronal precursors by inducing p27KIP1 expression and suppressing NOTCH signaling. Development. 2011;138(12):2543–54.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Himpel S, Tegge W, Frank R, Leder S, Joost HG, Becker W. Specificity determinants of substrate recognition by the protein kinase DYRK1A. J Biol Chem. 2000;275(4):2431–8.CrossRefPubMedGoogle Scholar
  14. Hong SH, Lee KS, Kwak SJ, Kim AK, Bai H, Jung MS, et al. Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet. 2012;8(8):e1002857.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kentrup H, Becker W, Heukelbach J, Wilmes A, Schurmann A, Huppertz C, et al. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem. 1996;271(7):3488–95.CrossRefPubMedGoogle Scholar
  16. Lochhead PA, Sibbet G, Morrice N, Cleghon V. Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell. 2005;121:925–36.CrossRefPubMedGoogle Scholar
  17. Schneider P, Bayo-Fina JM, Singh R, Kumar Dhanyamraju P, Holz P, Baier A, et al. Identification of a novel actin-dependent signal transducing module allows for the targeted degradation of GLI1. Nat Commun. 2015;6:8023.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Shaikh MN, Gutierrez-Avino F, Colonques J, Ceron J, Hammerle B, Tejedor FJ. Minibrain drives the Dacapo-dependent cell cycle exit of neurons in the Drosophila brain by promoting asense and prospero expression. Development. 2016;143(17):3195–205.CrossRefPubMedGoogle Scholar
  19. Soppa U, Schumacher J, Florencio Ortiz V, Pasqualon T, Tejedor FJ, Becker W. The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation. Cell Cycle. 2014;13(13):2084–100.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Tejedor F, Zhu XR, Kaltenbach E, Ackermann A, Baumann A, Canal I, et al. Minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron. 1995;14(2):287–301.CrossRefPubMedGoogle Scholar
  21. Tejedor FJ, Hammerle B. MNB/DYRK1A as a multiple regulator of neuronal development. FEBS J. 2011;278(2):223–35.CrossRefPubMedGoogle Scholar
  22. Tschop K, Conery AR, Litovchick L, Decaprio JA, Settleman J, Harlow E, et al. A kinase shRNA screen links LATS2 and the pRB tumor suppressor. Genes Dev. 2011;25(8):814–30.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Wang P, Alvarez-Perez JC, Felsenfeld DP, Liu H, Sivendran S, Bender A, et al. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med. 2015;21(4):383–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Wegiel J, Gong CX, Hwang YW. The role of DYRK1A in neurodegenerative diseases. FEBS J. 2011;278(2):236–45.CrossRefPubMedGoogle Scholar
  25. Xie W, Adayev T, Zhu H, Wegiel J, Wieraszko A, Hwang YW. Activity-dependent phosphorylation of dynamin 1 at serine 857. Biochemistry. 2012;51(34):6786–96.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Instituto de NeurocienciasCSIC and Universidad Miguel Hernandez-Campus de San JuanSant Joan (Alicante)Spain