Skip to main content

GPR56/ADGRG1

  • Reference work entry
  • First Online:
  • 381 Accesses

Synonyms

ADGRG1; Cyt28; GPR56; G protein coupled receptor 56; TM7XN1

Historical Background

The family of adhesion G protein coupled receptors (aGPCRs) is the second largest class of GPCRs with increasingly recognized functions in development and disease. Structurally, aGPCRs are characterized by the presence of an extremely long N-terminal region that contains a GPCR autoproteolysis-inducing (GAIN) domain and seven transmembrane spanning regions. Most aGPCRs undergo GAIN domain-mediated autoproteolytic processing to generate an N- and a C-terminal fragment. GPR56/ADGRG1, a member of the adhesion GPCR family, was first cloned in 1999 by two independent groups, one searching for further members of the secretin family of GPCRs and the other screening for differentially expressed genes in a human melanoma metastasis model (Liu et al. 1999; Zendman et al. 1999). However, the function of GPR56 was not known until the discovery of its loss of function mutations linked to an autosomal...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Galpha12/13 and RhoA. Nat Commun. 2015;6:6122.

    Article  PubMed  CAS  Google Scholar 

  • Ayers KL, Lambeth LS, Davidson NM, Sinclair AH, Oshlack A, Smith CA. Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq. BMC Genomics. 2015;16:704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bae BI, Tietjen I, Atabay KD, Evrony GD, Johnson MB, Asare E, et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science. 2014;343(6172):764–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahi-Buisson N, Poirier K, Boddaert N, Fallet-Bianco C, Specchio N, Bertini E, et al. GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain. 2010;133(11):3194–209.

    Article  PubMed  Google Scholar 

  • Chang GW, Hsiao CC, Peng YM, Vieira Braga FA, Kragten NA, Remmerswaal EB, et al. The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells. Cell Rep. 2016;15(8):1757–70.

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Yang L, Begum S, Xu L. GPR56 is essential for testis development and male fertility in mice. Dev Dyn. 2010;239(12):3358–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiang NY, Chang GW, Huang YS, Peng YM, Hsiao CC, Kuo ML, et al. Heparin interacts with the adhesion GPCR GPR56, reduces receptor shedding, and promotes cell adhesion and motility. J Cell Sci. 2016;129(11):2156–69.

    Article  PubMed  CAS  Google Scholar 

  • Daria D, Kirsten N, Muranyi A, Mulaw M, Ihme S, Kechter A, et al. GPR56 contributes to the development of acute myeloid leukemia in mice. Leukemia. 2016;30(8):1734–41.

    Article  PubMed  CAS  Google Scholar 

  • Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun. 2015;6:6121.

    Article  PubMed  CAS  Google Scholar 

  • Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem. 2008;283(21):14469–78. doi:10.1074/jbc.M708919200.

    Article  PubMed  CAS  Google Scholar 

  • Jeong SJ, Luo R, Li S, Strokes N, Piao X. Characterization of G protein-coupled receptor 56 protein expression in the mouse developing neocortex. J Comp Neurol. 2012;520(13):2930–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong SJ, Luo R, Singer K, Giera S, Kreidberg J, Kiyozumi D, et al. GPR56 functions together with alpha3beta1 integrin in regulating cerebral cortical development. PLoS One. 2013;8(7):e68781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin Z, Tietjen I, Bu L, Liu-Yesucevitz L, Gaur SK, Walsh CA, et al. Disease-associated mutations affect GPR56 protein trafficking and cell surface expression. Hum Mol Genet. 2007;16(16):1972–85.

    Article  PubMed  CAS  Google Scholar 

  • Kim JE, Han JM, Park CR, Shin KJ, Ahn C, Seong JY, et al. Splicing variants of the orphan G-protein-coupled receptor GPR56 regulate the activity of transcription factors associated with tumorigenesis. J Cancer Res Clin Oncol. 2010;136(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  • Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO, et al. GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci. 2008;28(22):5817–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Little KD, Hemler ME, Stipp CS. Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell. 2004;15(5):2375–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu M, Parker RM, Darby K, Eyre HJ, Copeland NG, Crawford J, et al. GPR56, a novel secretin-like human G-protein-coupled receptor gene. Genomics. 1999;55(3):296–305.

    Article  PubMed  CAS  Google Scholar 

  • Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X. G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A. 2011;108(31):12925–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo R, Jeong SJ, Yang A, Wen M, Saslowsky DE, Lencer WI, et al. Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation. PLoS One. 2014;9(6):e100043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moers A, Nurnberg A, Goebbels S, Wettschureck N, Offermanns S. Galpha12/Galpha13 deficiency causes localized overmigration of neurons in the developing cerebral and cerebellar cortices. Mol Cell Biol. 2008;28(5):1480–8. doi:10.1128/MCB.00651-07.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paavola KJ, Stephenson JR, Ritter SL, Alter SP, Hall RA. The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J Biol Chem. 2011;286(33):28914–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pabst C, Bergeron A, Lavallee VP, Yeh J, Gendron P, Norddahl GL, et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood. 2016;127(16):2018–27.

    Article  PubMed  CAS  Google Scholar 

  • Parrini E, Ferrari AR, Dorn T, Walsh CA, Guerrini R. Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations. Epilepsia. 2009;50(6):1344–53.

    Article  PubMed  CAS  Google Scholar 

  • Peng YM, van de Garde MD, Cheng KF, Baars PA, Remmerswaal EB, van Lier RA, et al. Specific expression of GPR56 by human cytotoxic lymphocytes. J Leukoc Biol. 2011;90(4):735–40.

    Article  PubMed  CAS  Google Scholar 

  • Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, et al. G protein-coupled receptor-dependent development of human frontal cortex. Science. 2004;303(5666):2033–6.

    Article  PubMed  CAS  Google Scholar 

  • Piao X, Chang BS, Bodell A, Woods K, Benzeev B, Topcu M, et al. Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol. 2005;58(5):680–7.

    Article  PubMed  CAS  Google Scholar 

  • Rao TN, Marks-Bluth J, Sullivan J, Gupta MK, Chandrakanthan V, Fitch SR, et al. High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res. 2015;14(3):307–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito Y, Kaneda K, Suekane A, Ichihara E, Nakahata S, Yamakawa N, et al. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia. 2013;27(8):1637–49.

    Article  PubMed  CAS  Google Scholar 

  • Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J, et al. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene. 2005;24(10):1673–82.

    Article  PubMed  CAS  Google Scholar 

  • Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E, van der Linden R, Marks-Bluth J, et al. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J Exp Med. 2015;212(1):93–106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoveken HM, Hajduczok AG, Xu L, Tall GG, Adhesion G. Protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A. 2015;112(19):6194–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoveken HM, Bahr LL, Anders MW, Wojtovich AP, Smrcka AV, Tall GG. Dihydromunduletone is a small-molecule selective adhesion G protein-coupled receptor antagonist. Mol Pharmacol. 2016;90(3):214–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS, et al. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc Natl Acad Sci U S A. 2014;111(44):15756–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu L, Begum S, Hearn JD, Hynes RO. GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A. 2006;103(24):9023–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu L, Begum S, Barry M, Crowley D, Yang L, Bronson RT, et al. GPR56 plays varying roles in endogenous cancer progression. Clin Exp Metastasis. 2010;27(4):241–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A, et al. GPR56 Regulates VEGF production and angiogenesis during melanoma progression. Cancer Res. 2011;71(16):5558–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Friedland S, Corson N, Xu L. GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res. 2014a;74(4):1022–31.

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Wang Z, Leng D, Dai H, Wang J, Liang J, et al. G protein-coupled receptor 56 regulates matrix production and motility of lung fibroblasts. Exp Biol Med (Maywood). 2014b;239(6):686–96.

    Article  CAS  Google Scholar 

  • Zendman AJ, Cornelissen IM, Weidle UH, Ruiter DJ, van Muijen GN. TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential. FEBS Lett. 1999;446(2–3):292–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Si Y, Ma N, Mei J. The RNA-binding protein PCBP2 inhibits Ang II-induced hypertrophy of cardiomyocytes though promoting GPR56 mRNA degeneration. Biochem Biophys Res Commun. 2015;464(3):679–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhua Piao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mehta, P., Piao, X. (2018). GPR56/ADGRG1. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101608

Download citation

Publish with us

Policies and ethics