Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Paulomi Mehta
  • Xianhua PiaoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101608


Historical Background

The family of adhesion G protein coupled receptors (aGPCRs) is the second largest class of GPCRs with increasingly recognized functions in development and disease. Structurally, aGPCRs are characterized by the presence of an extremely long N-terminal region that contains a GPCR autoproteolysis-inducing (GAIN) domain and seven transmembrane spanning regions. Most aGPCRs undergo GAIN domain-mediated autoproteolytic processing to generate an N- and a C-terminal fragment. GPR56/ADGRG1, a member of the adhesion GPCR family, was first cloned in 1999 by two independent groups, one searching for further members of the secretin family of GPCRs and the other screening for differentially expressed genes in a human melanoma metastasis model (Liu et al. 1999; Zendman et al. 1999). However, the function of GPR56 was not known until the discovery of its loss of function mutations linked to an autosomal...

This is a preview of subscription content, log in to check access.


  1. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Galpha12/13 and RhoA. Nat Commun. 2015;6:6122.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ayers KL, Lambeth LS, Davidson NM, Sinclair AH, Oshlack A, Smith CA. Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq. BMC Genomics. 2015;16:704.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bae BI, Tietjen I, Atabay KD, Evrony GD, Johnson MB, Asare E, et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science. 2014;343(6172):764–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bahi-Buisson N, Poirier K, Boddaert N, Fallet-Bianco C, Specchio N, Bertini E, et al. GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain. 2010;133(11):3194–209.PubMedCrossRefGoogle Scholar
  5. Chang GW, Hsiao CC, Peng YM, Vieira Braga FA, Kragten NA, Remmerswaal EB, et al. The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells. Cell Rep. 2016;15(8):1757–70.PubMedCrossRefGoogle Scholar
  6. Chen G, Yang L, Begum S, Xu L. GPR56 is essential for testis development and male fertility in mice. Dev Dyn. 2010;239(12):3358–67.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chiang NY, Chang GW, Huang YS, Peng YM, Hsiao CC, Kuo ML, et al. Heparin interacts with the adhesion GPCR GPR56, reduces receptor shedding, and promotes cell adhesion and motility. J Cell Sci. 2016;129(11):2156–69.PubMedCrossRefGoogle Scholar
  8. Daria D, Kirsten N, Muranyi A, Mulaw M, Ihme S, Kechter A, et al. GPR56 contributes to the development of acute myeloid leukemia in mice. Leukemia. 2016;30(8):1734–41.PubMedCrossRefGoogle Scholar
  9. Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun. 2015;6:6121.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem. 2008;283(21):14469–78. doi:10.1074/jbc.M708919200.CrossRefPubMedGoogle Scholar
  11. Jeong SJ, Luo R, Li S, Strokes N, Piao X. Characterization of G protein-coupled receptor 56 protein expression in the mouse developing neocortex. J Comp Neurol. 2012;520(13):2930–40.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Jeong SJ, Luo R, Singer K, Giera S, Kreidberg J, Kiyozumi D, et al. GPR56 functions together with alpha3beta1 integrin in regulating cerebral cortical development. PLoS One. 2013;8(7):e68781.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Jin Z, Tietjen I, Bu L, Liu-Yesucevitz L, Gaur SK, Walsh CA, et al. Disease-associated mutations affect GPR56 protein trafficking and cell surface expression. Hum Mol Genet. 2007;16(16):1972–85.PubMedCrossRefGoogle Scholar
  14. Kim JE, Han JM, Park CR, Shin KJ, Ahn C, Seong JY, et al. Splicing variants of the orphan G-protein-coupled receptor GPR56 regulate the activity of transcription factors associated with tumorigenesis. J Cancer Res Clin Oncol. 2010;136(1):47–53.PubMedCrossRefGoogle Scholar
  15. Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO, et al. GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci. 2008;28(22):5817–26.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Little KD, Hemler ME, Stipp CS. Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell. 2004;15(5):2375–87.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Liu M, Parker RM, Darby K, Eyre HJ, Copeland NG, Crawford J, et al. GPR56, a novel secretin-like human G-protein-coupled receptor gene. Genomics. 1999;55(3):296–305.PubMedCrossRefGoogle Scholar
  18. Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X. G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A. 2011;108(31):12925–30.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Luo R, Jeong SJ, Yang A, Wen M, Saslowsky DE, Lencer WI, et al. Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation. PLoS One. 2014;9(6):e100043.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Moers A, Nurnberg A, Goebbels S, Wettschureck N, Offermanns S. Galpha12/Galpha13 deficiency causes localized overmigration of neurons in the developing cerebral and cerebellar cortices. Mol Cell Biol. 2008;28(5):1480–8. doi:10.1128/MCB.00651-07.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Paavola KJ, Stephenson JR, Ritter SL, Alter SP, Hall RA. The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J Biol Chem. 2011;286(33):28914–21.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Pabst C, Bergeron A, Lavallee VP, Yeh J, Gendron P, Norddahl GL, et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood. 2016;127(16):2018–27.PubMedCrossRefGoogle Scholar
  23. Parrini E, Ferrari AR, Dorn T, Walsh CA, Guerrini R. Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations. Epilepsia. 2009;50(6):1344–53.PubMedCrossRefGoogle Scholar
  24. Peng YM, van de Garde MD, Cheng KF, Baars PA, Remmerswaal EB, van Lier RA, et al. Specific expression of GPR56 by human cytotoxic lymphocytes. J Leukoc Biol. 2011;90(4):735–40.PubMedCrossRefGoogle Scholar
  25. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, et al. G protein-coupled receptor-dependent development of human frontal cortex. Science. 2004;303(5666):2033–6.PubMedCrossRefGoogle Scholar
  26. Piao X, Chang BS, Bodell A, Woods K, Benzeev B, Topcu M, et al. Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol. 2005;58(5):680–7.PubMedCrossRefGoogle Scholar
  27. Rao TN, Marks-Bluth J, Sullivan J, Gupta MK, Chandrakanthan V, Fitch SR, et al. High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res. 2015;14(3):307–22.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Saito Y, Kaneda K, Suekane A, Ichihara E, Nakahata S, Yamakawa N, et al. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia. 2013;27(8):1637–49.PubMedCrossRefGoogle Scholar
  29. Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J, et al. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene. 2005;24(10):1673–82.PubMedCrossRefGoogle Scholar
  30. Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E, van der Linden R, Marks-Bluth J, et al. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J Exp Med. 2015;212(1):93–106.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Stoveken HM, Hajduczok AG, Xu L, Tall GG, Adhesion G. Protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A. 2015;112(19):6194–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Stoveken HM, Bahr LL, Anders MW, Wojtovich AP, Smrcka AV, Tall GG. Dihydromunduletone is a small-molecule selective adhesion G protein-coupled receptor antagonist. Mol Pharmacol. 2016;90(3):214–24.PubMedPubMedCentralCrossRefGoogle Scholar
  33. White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS, et al. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc Natl Acad Sci U S A. 2014;111(44):15756–61.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Xu L, Begum S, Hearn JD, Hynes RO. GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A. 2006;103(24):9023–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Xu L, Begum S, Barry M, Crowley D, Yang L, Bronson RT, et al. GPR56 plays varying roles in endogenous cancer progression. Clin Exp Metastasis. 2010;27(4):241–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A, et al. GPR56 Regulates VEGF production and angiogenesis during melanoma progression. Cancer Res. 2011;71(16):5558–68.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Yang L, Friedland S, Corson N, Xu L. GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res. 2014a;74(4):1022–31.PubMedCrossRefGoogle Scholar
  38. Yang J, Wang Z, Leng D, Dai H, Wang J, Liang J, et al. G protein-coupled receptor 56 regulates matrix production and motility of lung fibroblasts. Exp Biol Med (Maywood). 2014b;239(6):686–96.CrossRefGoogle Scholar
  39. Zendman AJ, Cornelissen IM, Weidle UH, Ruiter DJ, van Muijen GN. TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential. FEBS Lett. 1999;446(2–3):292–8.PubMedCrossRefGoogle Scholar
  40. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Zhang Y, Si Y, Ma N, Mei J. The RNA-binding protein PCBP2 inhibits Ang II-induced hypertrophy of cardiomyocytes though promoting GPR56 mRNA degeneration. Biochem Biophys Res Commun. 2015;464(3):679–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Newborn MedicineBoston Children’s Hospital, Harvard Medical SchoolBostonUSA