Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Katarina RadulovicEmail author
  • Jan Hendrik Niess
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101600


 AIM;  BL-AC/P26;  CLEC2C;  EA1;  GP32/28;  MLR-3;  Leu-23

Historical Background

CD69 was first described as the activation antigen expressed on natural killer (NK) cells and T lymphocytes upon in vitro stimulation with interleukin (IL)-2 (Lanier et al. 1988). Consecutive work demonstrated that CD69 expression does not depend on the nature of a specific stimulus as many different classes of molecules, such as concanavalin A, anti-CD3 antibody, phorbol myristate acetate (PMA), type I interferons (IFN), lipopolysaccharide, etc., can induce the expression of CD69. CD69 is a type II transmembrane protein belonging to the superfamily of the C-type lectins (CLEC) based on the presence of a conserved extracellular C-type lectin domain (CTLD, Fig. 1). CD69 also belongs to the family of NK cell receptors because the CD69gene locus is located within the NK cell receptor gene cluster, which is in humans located on chromosome 12 and in mice on chromosome 6. CD69 is a product of a single...
This is a preview of subscription content, log in to check access.


  1. Cibrian D, Saiz ML, de la Fuente H, Sanchez-Diaz R, Moreno-Gonzalo O, Jorge I, et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat Immunol. 2016;17:985–96.  https://doi.org/10.1038/ni.3504. ni.3504 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  2. de la Fuente H, Cruz-Adalia A, Martinez Del Hoyo G, Cibrian-Vera D, Bonay P, Perez-Hernandez D, et al. The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol Cell Biol. 2014;34:2479–87.  https://doi.org/10.1128/MCB.00348-14. MCB.00348-14 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  3. Esplugues E, Sancho D, Vega-Ramos J, Martinez C, Syrbe U, Hamann A, et al. Enhanced antitumor immunity in mice deficient in CD69. J Exp Med. 2003;197:1093–106.  https://doi.org/10.1084/jem.20021337. jem.20021337 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  4. Hamann J, Fiebig H, Strauss M. Expression cloning of the early activation antigen CD69, a type II integral membrane protein with a C-type lectin domain. J Immunol. 1993;150:4920–7.PubMedPubMedCentralGoogle Scholar
  5. Hare KJ, Jenkinson EJ, Anderson G. CD69 expression discriminates MHC-dependent and -independent stages of thymocyte positive selection. J Immunol. 1999;162:3978–83.PubMedPubMedCentralGoogle Scholar
  6. Lanier LL, Buck DW, Rhodes L, Ding A, Evans E, Barney C, et al. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J Exp Med. 1988;167:1572–85.PubMedCrossRefGoogle Scholar
  7. Liappas G, Gonzalez-Mateo GT, Sanchez-Diaz R, Lazcano JJ, Lasarte S, Matesanz-Marin A, et al. Immune-regulatory molecule CD69 controls peritoneal fibrosis. J Am Soc Nephrol. 2016;  https://doi.org/10.1681/ASN.2015080909.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Lin CR, Wei TY, Tsai HY, Wu YT, Wu PY, Chen ST. Glycosylation-dependent interaction between CD69 and S100A8/S100A9 complex is required for regulatory T-cell differentiation. FASEB J. 2015;29:5006–17.  https://doi.org/10.1096/fj.15-273987. fj.15-273987 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  9. Llera AS, Viedma F, Sanchez-Madrid F, Tormo J. Crystal structure of the C-type lectin-like domain from the human hematopoietic cell receptor CD69. J Biol Chem. 2001;276:7312–9.  https://doi.org/10.1074/jbc.M008573200. M008573200 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lopez-Cabrera M, Munoz E, Blazquez MV, Ursa MA, Santis AG, Sanchez-Madrid F. Transcriptional regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-alpha-responsive elements. J Biol Chem. 1995;270:21545–51.PubMedCrossRefGoogle Scholar
  11. Martin P, Gomez M, Lamana A, Cruz-Adalia A, Ramirez-Huesca M, Ursa MA, et al. CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation. Mol Cell Biol. 2010a;30:4877–89.  https://doi.org/10.1128/MCB.00456-10. MCB.00456-10 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  12. Martin P, Gomez M, Lamana A, Matesanz Marin A, Cortes JR, Ramirez-Huesca M, et al. The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity. J Allergy Clin Immunol. 2010b;126:355–65, 65 e1–3.  https://doi.org/10.1016/j.jaci.2010.05.010 S0091-6749(10)00811-0 [pii].CrossRefGoogle Scholar
  13. Martin-Gayo E, Sierra-Filardi E, Corbi AL, Toribio ML. Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood. 2010;115:5366–75.  https://doi.org/10.1182/blood-2009-10-248260.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Radulovic K, Manta C, Rossini V, Holzmann K, Kestler HA, Wegenka UM, et al. CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential. J Immunol. 2012;188:2001–13.  https://doi.org/10.4049/jimmunol.1100765. jimmunol.1100765 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  15. Radulovic K, Rossini V, Manta C, Holzmann K, Kestler HA, Niess JH. The early activation marker CD69 regulates the expression of chemokines and CD4 T cell accumulation in intestine. PLoS One. 2013;8:e65413.  https://doi.org/10.1371/journal.pone.0065413. PONE-D-13-03295 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  16. Risso A, Smilovich D, Capra MC, Baldissarro I, Yan G, Bargellesi A, et al. CD69 in resting and activated T lymphocytes. Its association with a GTP binding protein and biochemical requirements for its expression. J Immunol. 1991;146:4105–14.PubMedPubMedCentralGoogle Scholar
  17. Sancho D, Gomez M, Viedma F, Esplugues E, Gordon-Alonso M, Garcia-Lopez MA, et al. CD69 downregulates autoimmune reactivity through active transforming growth factor-beta production in collagen-induced arthritis. J Clin Invest. 2003;112:872–882. 10.1172/JCI19112 112/6/872 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  18. Shinoda K, Tokoyoda K, Hanazawa A, Hayashizaki K, Zehentmeier S, Hosokawa H, et al. Type II membrane protein CD69 regulates the formation of resting T-helper memory. Proc Natl Acad Sci USA. 2012;109:7409–14.  https://doi.org/10.1073/pnas.1118539109. 1118539109 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  19. Shiow LR, Rosen DB, Brdickova N, Xu Y, An J, Lanier LL, et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature. 2006;440:540–4.  https://doi.org/10.1038/nature04606.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Testi R, Pulcinelli FM, Cifone MG, Botti D, Del Grosso E, Riondino S, et al. Preferential involvement of a phospholipase A2-dependent pathway in CD69-mediated platelet activation. J Immunol. 1992;148:2867–71.PubMedPubMedCentralGoogle Scholar
  21. Testi R, D’Ambrosio D, De Maria R, Santoni A. The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today. 1994;15:479–83.  https://doi.org/10.1016/0167-5699(94)90193-7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Vance BA, Wu W, Ribaudo RK, Segal DM, Kearse KP. Multiple dimeric forms of human CD69 result from differential addition of N-glycans to typical (Asn-X-Ser/Thr) and atypical (Asn-X-cys) glycosylation motifs. J Biol Chem. 1997;272:23117–22.PubMedCrossRefGoogle Scholar
  23. Vance BA, Harley PH, Backlund PS, Ward Y, Phelps TL, Gress RE. Human CD69 associates with an N-terminal fragment of calreticulin at the cell surface. Arch Biochem Biophys. 2005;438:11–20.  https://doi.org/10.1016/j.abb.2005.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Vega-Ramos J, Alari-Pahissa E, Valle JD, Carrasco-Marin E, Esplugues E, Borras M, et al. CD69 limits early inflammatory diseases associated with immune response to Listeria monocytogenes infection. Immunol Cell Biol. 2010;88:707–15.  https://doi.org/10.1038/icb.2010.62. icb201062 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  25. Zingoni A, Palmieri G, Morrone S, Carretero M, Lopez-Botel M, Piccoli M, et al. CD69-triggered ERK activation and functions are negatively regulated by CD94 / NKG2-A inhibitory receptor. Eur J Immunol. 2000;30:644–51.  https://doi.org/10.1002/1521–4141(200002)30:2<644::AID-IMMU644>3.0.CO;2-H.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiomedicineUniversity Hospital Basel, University of BaselBaselSwitzerland
  2. 2.Department of Biomedicine and Department of Gastroenterology and HepatologyUniversity Hospital Basel, University of BaselBaselSwitzerland