Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

ENG

  • Steffen K. Meurer
  • Ralf Weiskirchen
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101593

Synonyms

Historical Background

Endoglin (OMIM 131195), also known as cluster of differentiation CD105, was originally identified in endothelial cells by immunofluorescence using a monoclonal antibody (mAb 44G4) raised against a human pre-B leukemia cell line (Gougos and Letarte 1988). Later it was shown that endoglin is also expressed outside the endothelium in pro-fibrogenic and immune cells (Meurer et al. 2014; Ojeda-Fernandez et al. 2016). It is an integral membrane-bound disulfide-linked 180 kDa homodimeric receptor that acts as an auxiliary receptor for ligands of the transforming growth factor-β (TGF-β) superfamily. Endoglin interacts with the TGF-β signaling receptors and influences Smad-dependent and Smad-independent effects. The endoglin gene produces two splice variants (i.e., S- and L-endoglin) which cause a different response outcome due to the sequence variation of their cytoplasmic tails. Regulated ectodomain shedding by matrix metalloprotease-14...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

RW is supported by grants from the German Research Foundation (SFB/TRR57, P13/Q3) and a grant from the Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University (IZKF Aachen, Project E7-6). The authors are grateful to Sabine Weiskirchen for preparing line drawings, Dr. J. MacDonald (Department of Radiology, Hereditary Hemorrhagic Telangiectasia Center, University of Utah, Salt Lake City, UT, USA) and Dr. U. Geisthoff (Department of Otorhinolaryngology, Essen University Hospital, Essen, Germany) for providing photographs. In addition, the authors would like to thank the colleagues Prof. Frank Gaillard, Dr. Andrew Dixon, and Dr. Nasir Siddiqui that deposited radiology images in the Radiopaedia.org resource and allowed us to use them in our work.

References

  1. Ali BR, Ben-Rebeh I, John A, Akawi NA, Milhem RM, Al-Shehhi NA, Al-Ameri MM, Al-Shamisi SA, Al-Gazali L. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia. PLoS One. 2011;6(10):e26206.  https://doi.org/10.1371/journal.pone.0026206.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allinson KR, Carvalho RL, van den Brink S, Mummery CL, Arthur HM. Generation of a floxed allele of the mouse Endoglin gene. Genesis. 2007;45:391–5.  https://doi.org/10.1002/dvg.20284.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bellón T, Corbí A, Lastres P, Calés C, Cebrián M, Vera S, Cheifetz S, Massague J, Letarte M, Bernabéu C. Identification and expression of two forms of the human transforming growth factor-β-binding protein endoglin with distinct cytoplasmic regions. Eur J Immunol. 1993;23:2340–5.  https://doi.org/10.1002/eji.1830230943.CrossRefPubMedGoogle Scholar
  4. Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C. Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-β receptor complex. J Cell Physiol. 2005;204:574–84.  https://doi.org/10.1002/jcp.20311.CrossRefPubMedGoogle Scholar
  5. Blanco FJ, Bernabeu C. Alternative splicing factor or splicing factor-2 plays a key role in intron retention of the endoglin gene during endothelial senescence. Aging Cell. 2011;10:896–907.  https://doi.org/10.1111/j.1474-9726.2011.00727.x.CrossRefPubMedGoogle Scholar
  6. Botella LM, Albiñana V, Ojeda-Fernandez L, Recio-Poveda L, Bernabéu C. Research on potential biomarkers in hereditary hemorrhagic telangiectasia. Front Genet. 2015;6:115.  https://doi.org/10.3389/fgene.2015.00115.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fernández-Ruiz E, St-Jacques S, Bellón T, Letarte M, Bernabéu C. Assignment of the human endoglin gene (END) to 9q34→qter. Cytogenet Cell Genet. 1993;64:204–7.  https://doi.org/10.1159/000133576.CrossRefPubMedGoogle Scholar
  8. Gougos A, Letarte M. Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J Immunol. 1988;141:1925–33.PubMedGoogle Scholar
  9. Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A, Bernabeu C. Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-β receptors I and II. J Biol Chem. 2002;277:29197–209.  https://doi.org/10.1074/jbc.M111991200.CrossRefPubMedGoogle Scholar
  10. Hawinkels LJ, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, Sier CF, ten Dijke P. Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res. 2010;70:4141–50.  https://doi.org/10.1158/0008-5472.CAN-09-4466.CrossRefPubMedGoogle Scholar
  11. Jovine L, Darie CC, Litscher ES, Wassarman PM. Zona pellucida domain proteins. Annu Rev Biochem. 2005;74:83–114.  https://doi.org/10.1146/annurev.biochem.74.082803.133039.CrossRefPubMedGoogle Scholar
  12. Koleva RI, Conley BA, Romero D, Riley KS, Marto JA, Lux A, Vary CP. Endoglin structure and function: determinants of endoglin phosphorylation by transforming growth factor-β receptors. J Biol Chem. 2006;281:25110–23.  https://doi.org/10.1074/jbc.M601288200.CrossRefPubMedGoogle Scholar
  13. Lastres P, Martín-Perez J, Langa C, Bernabéu C. Phosphorylation of the human-transforming-growth-factor-β-binding protein endoglin. Biochem J. 1994;301:765–8.  https://doi.org/10.1042/bj3010765.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lee NY, Blobe GC. The interaction of endoglin with β-arrestin2 regulates transforming growth factor-beta-mediated ERK activation and migration in endothelial cells. J Biol Chem. 2007;282:21507–17.  https://doi.org/10.1074/jbc.M700176200.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Lee NY, Ray B, How T, Blobe GC. Endoglin promotes transforming growth factor beta-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPC. J Biol Chem. 2008;283:32527–33.  https://doi.org/10.1074/jbc.M803059200.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Letamendía A, Lastres P, Botella LM, Raab U, Langa C, Velasco B, Attisano L, Bernabeu C. Role of endoglin in cellular responses to transforming growth factor-β. A comparative study with betaglycan. J Biol Chem. 1998;273:33011–9.  https://doi.org/10.1074/jbc.273.49.33011.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Llorca O, Trujillo A, Blanco FJ, Bernabeu C. Structural model of human endoglin, a transmembrane receptor responsible for hereditary hemorrhagic telangiectasia. J Mol Biol. 2007;365:694–705.  https://doi.org/10.1016/j.jmb.2006.10.015.CrossRefPubMedGoogle Scholar
  18. Lux A, Müller R, Tulk M, Olivieri C, Zarrabeita R, Salonikios T, Wirnitzer B. HHT diagnosis by Mid-infrared spectroscopy and artificial neural network analysis. Orphanet J Rare Dis. 2013;8:94.  https://doi.org/10.1186/1750-1172-8-94.CrossRefPubMedPubMedCentralGoogle Scholar
  19. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8:345–51.  https://doi.org/10.1038/ng1294-345.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Meurer SK, Tihaa L, Lahme B, Gressner AM, Weiskirchen R. Identification of endoglin in rat hepatic stellate cells: new insights into transforming growth factor β receptor signaling. J Biol Chem. 2005;280:3078–87.  https://doi.org/10.1074/jbc.M405411200.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Meurer SK, Tihaa L, Borkham-Kamphorst E, Weiskirchen R. Expression and functional analysis of endoglin in isolated liver cells and its involvement in fibrogenic Smad signalling. Cell Signal. 2011;23:683–99.  https://doi.org/10.1016/j.cellsig.2010.12.002.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Meurer SK, Alsamman M, Sahin H, Wasmuth HE, Kisseleva T, Brenner DA, Trautwein C, Weiskirchen R, Scholten D. Overexpression of endoglin modulates TGF-β1-signalling pathways in a novel immortalized mouse hepatic stellate cell line. PLoS One. 2013;8(2):e56116.  https://doi.org/10.1371/journal.pone.0056116.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Meurer SK, Alsamman M, Scholten D, Weiskirchen R. Endoglin in liver fibrogenesis: bridging basic science and clinical practice. World J Biol Chem. 2014;5:180–203.  https://doi.org/10.4331/wjbc.v5.i2.180.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ojeda-Fernández L, Recio-Poveda L, Aristorena M, Lastres P, Blanco FJ, Sanz-Rodríguez F, Gallardo-Vara E, de Las Casas-Engel M, Corbí Á, Arthur HM, Bernabeu C, Botella LM. Mice lacking endoglin in macrophages show an impaired immune response. PLoS Genet. 2016;12(3):e1005935.  https://doi.org/10.1371/journal.pgen.1005935.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Olitsky SE. Hereditary hemorrhagic telangiectasia: diagnosis and management. Am Fam Physician. 2010;82:785–90.PubMedCentralPubMedGoogle Scholar
  26. Pan CC, Kumar S, Shah N, Hoyt DG, Hawinkels LJ, Mythreye K, Lee NY. Src-mediated post-translational regulation of endoglin stability and function is critical for angiogenesis. J Biol Chem. 2014;289:25486–96.  https://doi.org/10.1074/jbc.M114.578609.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pérez-Gómez E, Eleno N, López-Novoa JM, Ramirez JR, Velasco B, Letarte M, Bernabéu C, Quintanilla M. Characterization of murine S-endoglin isoform and its effects on tumor development. Oncogene. 2005;24:4450–61.  https://doi.org/10.1038/sj.onc.1208644.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Pomeraniec L, Hector-Greene M, Ehrlich M, Blobe GC, Henis YI. Regulation of TGF-β receptor hetero-oligomerization and signaling by endoglin. Mol Biol Cell. 2015;26:3117–27.  https://doi.org/10.1091/mbc.E15-02-0069.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Qureshi ST, Gros P, Letarte M, Malo D. The murine endoglin gene (Eng) maps to chromosome 2. Genomics. 1995;26:165–6.  https://doi.org/10.1016/0888-7543(95)80099-8.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Ray BN, Lee NY, How T, Blobe GC. ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration. Carcinogenesis. 2010;31:435–41.  https://doi.org/10.1093/carcin/bgp327.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Sanz-Rodriguez F, Guerrero-Esteo M, Botella LM, Banville D, Vary CP, Bernabéu C. Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. J Biol Chem. 2004;279:32858–68.  https://doi.org/10.1074/jbc.M400843200.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Scherner O, Meurer SK, Tihaa L, Gressner AM, Weiskirchen R. Endoglin differentially modulates antagonistic transforming growth factor-β1 and BMP-7 signaling. J Biol Chem. 2007;282:13934–43.  https://doi.org/10.1074/jbc.M611062200.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Segatelli V, de Oliveira EC, Boin IF, Ataide EC, Escanhoela CA. Evaluation and comparison of microvessel density using the markers CD34 and CD105 in regenerative nodules, dysplastic nodules and hepatocellular carcinoma. Hepatol Int. 2014;8:260–5.  https://doi.org/10.1007/s12072-014-9525-9.CrossRefPubMedGoogle Scholar
  34. Shovlin CL, Guttmacher AE, Buscarini E, Faughnan ME, Hyland RH, Westermann CJ, Kjeldsen AD, Plauchu H. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet. 2000;91:66–7. doi:10.1002/(SICI)1096-8628(20000306)91:1<66::AID-AJMG12>3.0.CO;2-P.CrossRefPubMedGoogle Scholar
  35. Tual-Chalot S, Oh SP, Arthur HM. Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges. Front Genet. 2015;6:25.  https://doi.org/10.3389/fgene.2015.00025.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Xu G, Barrios-Rodiles M, Jerkic M, Turinsky AL, Nadon R, Vera S, Voulgaraki D, Wrana JL, Toporsian M, Letarte M. Novel protein interactions with endoglin and activin receptor-like kinase 1: potential role in vascular networks. Mol Cell Proteomics. 2014;13:489–502.  https://doi.org/10.1074/mcp.M113.033464.CrossRefPubMedGoogle Scholar
  37. Yao Y, Pan Y, Chen J, Sun X, Qiu Y, Ding Y. Endoglin (CD105) expression in angiogenesis of primary hepatocellular carcinomas: analysis using tissue microarrays and comparisons with CD34 and VEGF. Ann Clin Lab Sci. 2007;37:39–48.PubMedGoogle Scholar
  38. Yagmur E, Rizk M, Stanzel S, Hellerbrand C, Lammert F, Trautwein C, Wasmuth HE, Gressner AM. Elevation of endoglin (CD105) concentrations in serum of patients with liver cirrhosis and carcinoma. Eur J Gastroenterol Hepatol. 2007;19:755–61.  https://doi.org/10.1097/MEG.0b013e3282202bea.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical ChemistryRWTH University Hospital AachenAachenGermany