Skip to main content

PAKs

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 116 Accesses

Synonyms

p21-activated kinases (PAKs)

Historical Background

PAKs are a family of protein kinases that were first identified in a screen for proteins that interact with the small G proteins Rac1 and Cdc42. Since these have a molecular weight of 21kd, this kinase was named p21-activated kinase (Manser et al. 1994). PAKs are widely conserved and found in yeast as well as in Drosophila and mammals. They are divided into two groups, group I, which consists of PAK1 (α PAK), PAK2 (γ PAK), and PAK3 (β PAK), and group II which consists of PAK4, PAK5, and PAK6 (Rane and Minden 2014). PAK4, which was identified from a PCR screen with degenerate primers based on the PAK2 kinase domain (Abo et al. 1998; Cotteret and Chernoff 2006), is the founding member of group II PAKs. PAK6 was identified as an androgen receptor (AR)-interacting protein in a yeast two-hybrid screen (Yang et al. 2001). The name PAK7 was retired in 2016, since it is no longer considered a separate protein from PAK 5.

PAK Expression

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo A, Qu J, Cammarano J, Dan C, Fritsch A, Baud V, et al. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J. 1998;17:6527–40. doi:10.1093/emboj/17.22.6527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balasenthil S, Sahin AA, Barnes CJ, Wang RA, Pestell RG, Vadlamudi RK, et al. p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem. 2004;279:1422–8. doi:10.1074/jbc.M309937200.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee M, Worth D, Prowse DM, Nikolic M. Pak1 phosphorylation on T212 affects microtubules in cells undergoing mitosis. Curr Biol. 2002;12:1233–9.

    Article  CAS  PubMed  Google Scholar 

  • Baskaran Y, Ng YW, Selamat W, Ling FT, Manser E. Group I and II mammalian PAKs have different modes of activation by Cdc42. EMBO Rep. 2012;13:653–9. doi:10.1038/embor.2012.75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bokoch GM. Biology of the p21-activated kinases. Annu Rev Biochem. 2003;72:743–81. doi:10.1146/annurev.biochem.72.121801.161742.

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM, Wang Y, Bohl BP, Sells MA, Quilliam LA, Knaus UG. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J Biol Chem. 1996;271:25746–9.

    Article  CAS  PubMed  Google Scholar 

  • Buchwald G, Hostinova E, Rudolph MG, Kraemer A, Sickmann A, Meyer HE, et al. Conformational switch and role of phosphorylation in PAK activation. Mol Cell Biol. 2001;21:5179–89. doi:10.1128/MCB.21.15.5179-5189.2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR, et al. Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem. 2002;277:550–8. doi:10.1074/jbc.M105732200.

    Article  PubMed  CAS  Google Scholar 

  • Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO, et al. Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res. 2004;10:3448–56. doi:10.1158/1078-0432.CCR-03-0210.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan SC, Ebeling MC, Maher DM, Koch MD, Watanabe A, Aburatani H, et al. MUC13 mucin augments pancreatic tumorigenesis. Mol Cancer Ther. 2012;11:24–33. doi:10.1158/1535-7163.MCT-11-0598.

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Auletta T, Dovirak O, Hutter C, Kuntz K, El-ftesi S, et al. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol Ther. 2008;7:1793–802.

    Article  CAS  PubMed  Google Scholar 

  • Ching YP, Leong VY, Wong CM, Kung HF. Identification of an autoinhibitory domain of p21-activated protein kinase 5. J Biol Chem. 2003;278:33621–4. doi:10.1074/jbc.C300234200.

    Article  PubMed  CAS  Google Scholar 

  • Chow HY, Jubb AM, Koch JN, Jaffer ZM, Stepanova D, Campbell DA, et al. p21-activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 2012;72:5966–75. doi:10.1158/0008-5472.can-12-2246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cotteret S, Chernoff J. Nucleocytoplasmic shuttling of Pak5 regulates its antiapoptotic properties. Mol Cell Biol. 2006;26:3215–30. doi:10.1128/MCB.26.8.3215-3230.2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deacon SW, Beeser A, Fukui JA, Rennefahrt UEE, Myers C, Chernoff J, et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol. 2008;15:322–31. doi:10.1016/j.chembiol.2008.03.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009;28:51–63. doi:10.1007/s10555-008-9168-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Field J, Manser E. The PAKs come of age: celebrating 18 years of discovery. Cell Logist. 2012;2:54–8. doi:10.4161/cl.22084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedland JC, Lakins JN, Kazanietz MG, Chernoff J, Boettiger D, Weaver VM. alpha6beta4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-kappaB-dependent resistance to apoptosis in 3D mammary acini. J Cell Sci. 2007;120:3700–12. doi:10.1242/jcs.03484.

    Article  PubMed  CAS  Google Scholar 

  • Frost JA, Swantek JL, Stippec S, Yin MJ, Gaynor R, Cobb MH. Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J Biol Chem. 2000;275:19693–9. doi:10.1074/jbc.M909860199.

    Article  PubMed  CAS  Google Scholar 

  • Galisteo ML, Chernoff J, Su Y-C, Skolnik EY, Schlessinger J. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J Biol Chem. 1996;271:20997–1000.

    Article  CAS  PubMed  Google Scholar 

  • Ha BH, Davis MJ, Chen C, Lou HJ, Gao J, Zhang R, et al. Type II p21-activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate. Proc Natl Acad Sci USA. 2012;109:16107–12. doi:10.1073/pnas.1214447109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Sudo T, Maruta H, Nishimura R. The direct PAK1 inhibitor, TAT-PAK18, blocks preferentially the growth of human ovarian cancer cell lines in which PAK1 is abnormally activated by autophosphorylation at Thr 423. Drug Discov Ther. 2010;4:1–4.

    CAS  PubMed  Google Scholar 

  • Higuchi M, Onishi K, Kikuchi C, Gotoh Y. Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol. 2008;1356–64. doi:10.1038/ncb1795.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa Y, Tikoo A, Huynh J, Utermark T, Hanemann CO, Giovannini M, et al. A clue to the therapy of neurofibromatosis type 2: NF2/merlin is a PAK1 inhibitor. Cancer J. 2004;10:20–6.

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeshan S, Krishnamoorthy YR, Singhal M, Subramanian A, Mavuluri J, Lakshmi A, et al. Transcriptional regulation of fibronectin by p21-activated kinase-1 modulates pancreatic tumorigenesis. Oncogene. 2015;34:455–64. doi:10.1038/onc.2013.576.

    Article  CAS  PubMed  Google Scholar 

  • Jha RK, Strauss CE. 3D structure analysis of PAKs: a clue to the rational design for affinity reagents and blockers. Cell Logist. 2012;2:69–77. doi:10.4161/cl.21883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpov AS, Amiri P, Bellamacina C, Bellance M-H, Breitenstein W, Daniel D, et al. Optimization of a dibenzodiazepine hit to a potent and selective allosteric PAK1 inhibitor. ACS Med Chem Lett. 2015;776–81. doi:10.1021/acsmedchemlett.5b00102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelly ML, Chernoff J. Mouse models of PAK function. Cell Logist. 2012;2:84–8. doi:10.4161/cl.21381.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim EK, Yun SJ, Ha JM, Kim YW, Jin IH, Yun J, et al. Selective activation of Akt1 by mammalian target of rapamycin complex 2 regulates cancer cell migration, invasion, and metastasis. Oncogene. 2011;30:2954–63. doi:10.1038/onc.2011.22.

    Article  CAS  PubMed  Google Scholar 

  • Kimmelman AC, Hezel AF, Aguirre AJ, Zheng H, Paik JH, Ying H, et al. Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc Natl Acad Sci USA. 2008;105:19372–7. doi:10.1073/pnas.0809966105.

    Article  PubMed  PubMed Central  Google Scholar 

  • King CC, Gardiner MM, Zenke FT, Bohl BP, Newton AC, Hemmings BA, et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J Biol Chem. 2000;275:41201–9. doi:10.1074/jbc.M006553200.

    Article  CAS  PubMed  Google Scholar 

  • Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T. Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell. 2003;12:841–9.

    Article  CAS  PubMed  Google Scholar 

  • Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A, et al. Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res. 2007;67:8089–94. doi:10.1158/0008-5472.can-07-2300.

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Jung YS, Chung JY, Oh AY, Lee SJ, Choi DH, et al. Novel tumor suppressive function of Smad4 in serum starvation-induced cell death through PAK1-PUMA pathway. Cell Death Dis. 2011;2:e235. doi:10.1038/cddis.2011.116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ, et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 2000;102:387–97.

    Article  CAS  PubMed  Google Scholar 

  • Licciulli S, Maksimoska J, Zhou C, Troutman S, Kota S, Liu Q, et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem. 2013;288:29105–14. doi:10.1074/jbc.M113.510933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Xiao H, Tian Y, Nekrasova T, Hao X, Lee HJ, et al. The pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice. Mol Cancer Res. 2008;6:1215–24. doi:10.1158/1541-7786.MCR-08-0087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loo TH, Ng YW, Lim L, Manser E. GIT1 activates p21-activated kinase through a mechanism independent of p21 binding. Mol Cell Biol. 2004;24:3849–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu W, Katz S, Gupta R, Mayer BJ. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr Biol. 1997;7:85–94.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Pan ZZ, Devaux Y, Ray P. p21-activated protein kinase 4 (PAK4) interacts with the keratinocyte growth factor receptor and participates in keratinocyte growth factor-mediated inhibition of oxidant-induced cell death. J Biol Chem. 2003;278:10374–80. doi:10.1074/jbc.M205875200.

    Article  CAS  PubMed  Google Scholar 

  • Maksimoska J, Feng L, Harms K, Yi C, Kissil J, Marmorstein R, et al. Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J Am Chem Soc. 2008;130:15764–5. doi:10.1021/ja805555a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994;367:40–6. doi:10.1038/367040a0.

    Article  CAS  PubMed  Google Scholar 

  • Manser E, Chong C, Zhao ZS, Leung T, Michael G, Hall C, et al. Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J Biol Chem. 1995;270:25070–8.

    Article  CAS  PubMed  Google Scholar 

  • Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J, et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci. 2010;107:9446–51. doi:10.1073/pnas.0911863107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng YW, Raghunathan D, Chan PM, Baskaran Y, Smith DJ, Lee CH, et al. Why an A-loop phospho-mimetic fails to activate PAK1: understanding an inaccessible kinase state by molecular dynamics simulations. Structure. 2010;18:879–90. doi:10.1016/j.str.2010.04.011.

    Article  CAS  PubMed  Google Scholar 

  • Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci USA. 2011;108:7177–82. doi:10.1073/pnas.1103350108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong CC, Gierke S, Pitt C, Sagolla M, Cheng CK, Zhou W, et al. Small molecule inhibition of group I p21-activated kinases in breast cancer induces apoptosis and potentiates the activity of microtubule stabilizing agents. Breast Cancer Res. 2015;17:59. doi:10.1186/s13058-015-0564-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pirruccello M, Sondermann H, Pelton JG, Pellicena P, Hoelz A, Chernoff J, et al. A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J Mol Biol. 2006;361:312–26. doi:10.1016/j.jmb.2006.06.017.

    Article  CAS  PubMed  Google Scholar 

  • Porchia LM, Guerra M, Wang YC, Zhang Y, Espinosa AV, Shinohara M, et al. 2-Amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phe nyl} Acetamide (OSU-03012), a Celecoxib Derivative, Directly Targets p21-Activated Kinase. Mol Pharmacol. 2007;72:1124–31. doi:10.1124/mol.107.037556.

    Article  CAS  PubMed  Google Scholar 

  • Prudnikova TY, Villamar-Cruz O, Rawat SJ, Cai KQ, Chernoff J. Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells. Oncogene. 2016;35:2178–85. doi:10.1038/onc.2015.278.

    Article  CAS  PubMed  Google Scholar 

  • Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer. 2014;14:13–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rane CK, Minden A. P21 activated kinases: structure, regulation, and functions. Small GTPases. 2014;5:e28003. doi:10.4161/sgtp.28003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rayala SK, Talukder AH, Balasenthil S, Tharakan R, Barnes CJ, Wang RA, et al. P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Res. 2006;66:1694–701. doi:10.1158/0008-5472.CAN-05-2922.

    Article  CAS  PubMed  Google Scholar 

  • Rennefahrt UEE, Deacon SW, Parker SA, Devarajan K, Beeser A, Chernoff J, et al. Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. J Biol Chem. 2007;282:15667–78. doi:10.1074/jbc.M700253200.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph J, Crawford JJ, Hoeflich KP, Wang W. Inhibitors of p21-activated kinases (PAKs). J Med Chem. 2015;58:111–29. doi:10.1021/jm501613q.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph J, Murray LJ, Ndubaku CO, O’Brien T, Blackwood E, Wang W, et al. Chemically diverse group I p21-Activated Kinase (PAK) inhibitors impart acute cardiovascular toxicity with a narrow therapeutic window. J Med Chem. 2016;59:5520–41. doi:10.1021/acs.jmedchem.6b00638.

    Article  CAS  PubMed  Google Scholar 

  • Tabanifar B, Zhao Z, Manser E. PAK5 is auto-activated by a central domain that promotes kinase oligomerization. Biochem J. 2016;473:1777–89. doi:10.1042/BCJ20160132.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J, et al. Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol. 1997;17:4454–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang Y, Zhou H, Chen A, Pittman RN, Field J. The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem. 2000;275:9106–9.

    Article  CAS  PubMed  Google Scholar 

  • Teng TS, Lin B, Manser E, Ng DCH, Cao X. Stat3 promotes directional cell migration by regulating Rac1 activity via its activator {beta}PIX. J Cell Sci. 2009;122:4150–9. doi:10.1242/jcs.057109.

    Article  CAS  PubMed  Google Scholar 

  • Thiel DA, Reeder MK, Pfaff A, Coleman TR, Sells MA, Chernoff JA. Cell cycle regulated phosphorylation of p21-activated kinase 1. Curr Biol. 2002;12:1227–32.

    Article  CAS  PubMed  Google Scholar 

  • Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM. Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis. 2006;3:207–17. doi:10.1159/000095258.

    Article  CAS  PubMed  Google Scholar 

  • Wang RA, Mazumdar A, Vadlamudi RK, Kumar R. P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J. 2002;21:5437–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wells CM, Abo A, Ridley AJ. PAK4 is activated via PI3K in HGF-stimulated epithelial cells. J Cell Sci. 2002;115:3947–56.

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem. 2001;276:15345–53. doi:10.1074/jbc.M010311200.

    Article  CAS  PubMed  Google Scholar 

  • Ye DZ, Field J. PAK signaling in cancer. Cell Logist. 2012;2:105–16. doi:10.4161/cl.21882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeo D, Huynh N, Beutler JA, Christophi C, Shulkes A, Baldwin GS, et al. Glaucarubinone and gemcitabine synergistically reduce pancreatic cancer growth via down-regulation of P21-activated kinases. Cancer Lett. 2014;346:264–72. doi:10.1016/j.canlet.2014.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi C, Wilker EW, Yaffe MB, Stemmer-Rachamimov A, Kissil JL. Validation of the p21-activated kinases as targets for inhibition in neurofibromatosis Type 2. Cancer Res. 2008;68:7932–7. doi:10.1158/0008-5472.can-08-0866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao ZS, Manser E. PAK family kinases: physiological roles and regulation. Cell Logist. 2012;2:59–68. doi:10.4161/cl.21912.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guo, J., Field, J. (2018). PAKs. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101590

Download citation

Publish with us

Policies and ethics