Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Aryl Hydrocarbon Receptor

  • Qin WangEmail author
  • Andrew VonHandorf
  • Alvaro Puga
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101571


Historical Background

Driven by a focus on public health, Dr. Alan Poland’s laboratory at the University of Rochester originally identified the aryl hydrocarbon receptor (AHR) in 1976 by using radiolabelled [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to ascertain its inner cellular binding protein (Poland et al. 1976). During the following 40 years, numerous endeavors have been devoted to elucidating its molecular and physiological significance, many of which have added and continue to enhance our knowledge of this transcription factor. Of particular note, two milestones should be mentioned that have significantly contributed to the characterization of the AHR protein (Gasiewica and Henry 2012): the identification of the Ah locus (Gielen et al. 1972; Nebert et al. 1972) and the report of the Ahb and Ahdalleles exhibiting high- and low-aryl hydrocarbon hydroxylase (AHH) activity in different mouse strains,...

This is a preview of subscription content, log in to check access.


  1. Abel J, Haarmann-Stemmann T. An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol Chem. 2010;391:1235–48.PubMedCrossRefGoogle Scholar
  2. Abnet CC, Tanguay RL, Hahn ME, Heideman W, Peterson RE. Two forms of aryl hydrocarbon receptor type 2 in rainbow trout (Oncorhynchus mykiss). Evidence for differential expression and enhancer specificity. J Biol Chem. 1999;274:15159–66.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andreasen EA, Hahn ME, Heideman W, Peterson RE, Tanguay RL. The zebrafish (Danio rerio) aryl hydrocarbon receptor type 1 is a novel vertebrate receptor. Mol Pharmacol. 2002;62:234–49.PubMedCrossRefGoogle Scholar
  4. Antonsson C, Whitelaw ML, Mcguire J, Gustafsson JA, Poellinger L. Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains. Mol Cell Biol. 1995;15:756–65.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aylward LL, Hays SM. Temporal trends in human TCDD body burden: decreases over three decades and implications for exposure levels. J Expo Anal Environ Epidemiol. 2002;12:319–28.PubMedCrossRefGoogle Scholar
  6. Barouki R, Coumoul X, Fernandez-Salguero PM. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett. 2007;581:3608–15.PubMedCrossRefGoogle Scholar
  7. Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008;18:207–50.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bell DR, Poland A. Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of hsp90. J Biol Chem. 2000;275:36407–14.PubMedCrossRefGoogle Scholar
  9. Bocio A, Domingo JL. Daily intake of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDFs) in foodstuffs consumed in Tarragona, Spain: a review of recent studies (2001–2003) on human PCDD/PCDF exposure through the diet. Environ Res. 2005;97:1–9.PubMedCrossRefGoogle Scholar
  10. Bollerot K, Angelier N, Coumailleau P. Molecular cloning and embryonic expression of the Xenopus Arnt gene. Mech Dev. 2001;108:227–31.PubMedCrossRefGoogle Scholar
  11. Brunnberg S, Swedenborg E, Gustafsson J. Functional interactions fo AHR with other receptors. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 127–41.Google Scholar
  12. Burbach KM, Poland A, Bradfield CA. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci USA. 1992;89:8185–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Busbee PB, Rouse M, Nagarkatti M, Nagarkatti PS. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr Rev. 2013;71:353–69.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Butler RA, Kelley ML, Powell WH, Hahn ME, Van Beneden RJ. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Gene. 2001;278:223–34.PubMedCrossRefGoogle Scholar
  15. Chan JK, Man YB, Xing GH, Wu SC, Murphy MB, Xu Y, Wong MH. Dietary exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans via fish consumption and dioxin-like activity in fish determined by H4IIE-luc bioassay. Sci Total Environ. 2013;463–464:1192–200.PubMedCrossRefGoogle Scholar
  16. Chang C, Smith DR, Prasad VS, Sidman CL, Nebert DW, Puga A. Ten nucleotide differences, five of which cause amino acid changes, are associated with the Ah receptor locus polymorphism of C57BL/6 and DBA/2 mice. Pharmacogenetics. 1993;3:312–21.PubMedCrossRefGoogle Scholar
  17. DeGroot D, He G, Fraccalvieri D, Bonati L, Pandini A, Denison MS. AHR ligands: promiscuity in binding and diversity in response. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 63–79.Google Scholar
  18. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, Desantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-I T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002;298:2157–67.PubMedCrossRefGoogle Scholar
  19. Denis M, Cuthill S, Wikstrom AC, Poellinger L, Gustafsson JA. Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem Biophys Res Commun. 1988;155:801–7.PubMedCrossRefGoogle Scholar
  20. Denison MS, Fisher JM, Whitlock Jr JP. The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J Biol Chem. 1988a;263:17221–4.PubMedPubMedCentralGoogle Scholar
  21. Denison MS, Fisher JM, Whitlock Jr JP. Inducible, receptor-dependent protein-DNA interactions at a dioxin-responsive transcriptional enhancer. Proc Natl Acad Sci USA. 1988b;85:2528–32.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Denison MS, Soshilov AA, He G, Degroot DE, Zhao B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci. 2011;124:1–22.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Devito MJ, Birnbaum LS, Farland WH, Gasiewicz TA. Comparisons of estimated human body burdens of dioxinlike chemicals and TCDD body burdens in experimentally exposed animals. Environ Health Perspect. 1995;103:820–31.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Duncan DM, Burgess EA, Duncan I. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 1998;12:1290–303.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dwyer JH, Flesch-Janys D. Agent Orange in Vietnam. Am J Public Health. 1995;85:476–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Elferink CJ, Whitlock Jr JP. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-inducible, Ah receptor-mediated bending of enhancer DNA. J Biol Chem. 1990;265:5718–21.PubMedPubMedCentralGoogle Scholar
  27. Ema M, Sogawa K, Watanabe N, Chujoh Y, Matsushita N, Gotoh O, Funae Y, Fujii-Kuriyama Y. cDNA cloning and structure of mouse putative Ah receptor. Biochem Biophys Res Commun. 1992;184:246–53.PubMedCrossRefGoogle Scholar
  28. Ema M, Ohe N, Suzuki M, Mimura J, Sogawa K, Ikawa S, Fujii-Kuriyama Y. Dioxin binding activities of polymorphic forms of mouse and human arylhydrocarbon receptors. J Biol Chem. 1994;269:27337–43.PubMedPubMedCentralGoogle Scholar
  29. Emmons RB, Duncan D, Estes PA, Kiefel P, Mosher JT, Sonnenfeld M, Ward MP, Duncan I, Crews ST. The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development. 1999;126:3937–45.PubMedPubMedCentralGoogle Scholar
  30. Emmons RB, Duncan D, Duncan I. Regulation of the Drosophila distal antennal determinant spineless. Dev Biol. 2007;302:412–26.PubMedCrossRefGoogle Scholar
  31. Fujii-Kuriyama Y, Kawajiri K. Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86:40–53.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fujisawa-Sehara A, Yamane M, Fujii-Kuriyama Y. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: its possible translocation to nucleus. Proc Natl Acad Sci USA. 1988;85:5859–63.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fukunaga BN, Probst MR, Reisz-Porszasz S, Hankinson O. Identification of functional domains of the aryl hydrocarbon receptor. J Biol Chem. 1995;270:29270–8.PubMedCrossRefGoogle Scholar
  34. Gasiewica TA, Henry E. History of research on the AHR. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 3–32.Google Scholar
  35. Gielen JE, Goujon FM, Nebert DW. Genetic regulation of aryl hydrocarbon hydroxylase induction. II Simple Mendelian expression in mouse tissues in vivo. J Biol Chem. 1972;247:1125–37.PubMedPubMedCentralGoogle Scholar
  36. Gough M. Agent Orange: exposure and policy. Am J Public Health. 1991;81:289–90.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 2000;40:519–61.PubMedCrossRefGoogle Scholar
  38. Hahn ME. Dioxin toxicology and the aryl hydrocarbon receptor: insights from fish and other non-traditional models. Mar Biotechnol (NY). 2001;3:S224–38.CrossRefGoogle Scholar
  39. Hahn ME. Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact. 2002;141:131–60.PubMedCrossRefGoogle Scholar
  40. Hahn ME, Karchner SI, Shapiro MA, Perera SA. Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proc Natl Acad Sci USA. 1997;94:13743–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lapseritis JM. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. J Exp Zool A Comp Exp Biol. 2006;305:693–706.PubMedCrossRefGoogle Scholar
  42. Hankinson O. Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch Biochem Biophys. 2005;433:379–86.PubMedCrossRefGoogle Scholar
  43. Hansson M, Barregard L, Sallsten G, Svensson BG, Rappe C. Polychlorinated dibenzo-p-dioxin and dibenzofuran levels and patterns in polyvinylchloride and chloralkali industry workers. Int Arch Occup Environ Health. 1997;70:51–6.PubMedCrossRefGoogle Scholar
  44. Harper PA, Riddick DS, Okey AB. Regulating the regulator: factors that control levels and activity of the aryl hydrocarbon receptor. Biochem Pharmacol. 2006;72:267–79.PubMedCrossRefGoogle Scholar
  45. Heid SE, Walker MK, Swanson HI. Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation. Toxicol Sci. 2001;61:187–96.PubMedCrossRefGoogle Scholar
  46. Hu J, Zheng M, Liu W, Li C, Nie Z, Liu G, Xiao K, Dong S. Occupational exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls, and polychlorinated naphthalenes in workplaces of secondary nonferrous metallurgical facilities in China. Environ Sci Technol. 2013;47:7773–9.PubMedCrossRefGoogle Scholar
  47. Huang G, Elferink CJ. A novel nonconsensus xenobiotic response element capable of mediating aryl hydrocarbon receptor-dependent gene expression. Mol Pharmacol. 2012;81:338–47.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Huang X, Powell-Coffman JA, Jin Y. The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development. 2004;131:819–28.PubMedCrossRefGoogle Scholar
  49. IARC. IARC Working Group on the evaluation of carcinogenic risks to humans: polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. Lyon, France, 4–11 February 1997. IARC Monogr Eval Carcinog Risks Hum. 1997;69:1–631.Google Scholar
  50. Ikuta T, Eguchi H, Tachibana T, Yoneda Y, Kawajiri K. Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem. 1998;273:2895–904.PubMedCrossRefGoogle Scholar
  51. INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY. ENVIRONMENTAL HEALTH CRITERIA 88. Polychlorinated Dibenso-Para-Dioxin and Dibenzofurans. International Programme on Chemical Safety. 1989. http://www.inchem.org/documents/ehc/ehc/ehc88.htm
  52. Jeuken A, Keser BJ, Khan E, Brouwer A, Koeman J, Denison MS. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits. J Agric Food Chem. 2003;51:5478–87.PubMedCrossRefGoogle Scholar
  53. Karchner SI, Powell WH, Hahn ME. Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus. Evidence for a novel subfamily of ligand-binding basic helix loop helix-Per-ARNT-Sim (bHLH-PAS) factors. J Biol Chem. 1999;274:33814–24.PubMedCrossRefGoogle Scholar
  54. Karchner SI, Franks DG, Hahn ME. AHR1B, a new functional aryl hydrocarbon receptor in zebrafish: tandem arrangement of ahr1b and ahr2 genes. Biochem J. 2005;392:153–61.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Karchner SI, Franks DG, Kennedy SW, Hahn ME. The molecular basis for differential dioxin sensitivity in birds: role of the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2006;103:6252–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, Matsushima Y, Mimura J, Pettersson S, Pollenz RS, Sakaki T, Hirokawa T, Akiyama T, Kurosumi M, Poellinger L, Kato S, Fujii-Kuriyama Y. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci USA. 2009;106:13481–6.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kelada FS. Occupational intake by dermal exposure to polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in pulp mill industry. Am Ind Hyg Assoc J. 1990;51:519–21.PubMedCrossRefGoogle Scholar
  58. Kim MD, Jan LY, Jan YN. The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. Genes Dev. 2006;20:2806–19.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ma Q, Whitlock Jr JP. A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Chem. 1997;272:8878–84.PubMedCrossRefGoogle Scholar
  60. Lavine JA, Rowatt AJ, Klimova T, Whitington AJ, Dengler E, Beck C, Powell WH. Aryl hydrocarbon receptors in the frog Xenopus laevis: two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Sci. 2005;88:60–72.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mandal PK. Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J Comp Physiol B. 2005;175:221–30.PubMedCrossRefGoogle Scholar
  62. Marlowe JL, Knudsen ES, Schwemberger S, Puga A. The aryl hydrocarbon receptor displaces p300 from E2F-dependent promoters and represses S phase-specific gene expression. J Biol Chem. 2004;279:29013–22.PubMedCrossRefGoogle Scholar
  63. Mitchell KA, Elferink CJ. Timing is everything: consequences of transient and sustained AhR activity. Biochem Pharmacol. 2009;77:947–56.PubMedCrossRefGoogle Scholar
  64. Mocarelli P. Seveso: a teaching story. Chemosphere. 2001;43:391–402.PubMedCrossRefGoogle Scholar
  65. Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer. 2014;14:801–14.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF. A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones. 1996;1:237–50.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Nebert DW, Goujon FM, Gielen JE. Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: simple autosomal dominant trait in the mouse. Nat New Biol. 1972;236:107–10.PubMedCrossRefGoogle Scholar
  68. Nebert DW, Negishi M, Lang MA, Hjelmeland LM, Eisen HJ. The Ah locus, a multigene family necessary for survival in a chemically adverse environment: comparison with the immune system. Adv Genet. 1982;21:1–52.PubMedPubMedCentralGoogle Scholar
  69. Ohi H, Fujita Y, Miyao M, Saguchi K, Murayama N, Higuchi S. Molecular cloning and expression analysis of the aryl hydrocarbon receptor of Xenopus laevis. Biochem Biophys Res Commun. 2003;307:595–9.PubMedCrossRefGoogle Scholar
  70. Ohtake F, Kato S. The E3 ubiquitin ligase activity of transcription factor AHR permits nongenomic regulation of biological pathways. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 143–56.Google Scholar
  71. Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H, Takahashi S, Kouzmenko A, Nohara K, Chiba T, Fujii-Kuriyama Y, Kato S. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature. 2007;446:562–6.PubMedCrossRefGoogle Scholar
  72. Pelclova D, Urban P, Preiss J, Lukas E, Fenclova Z, Navratil T, Dubska Z, Senholdova Z. Adverse health effects in humans exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rev Environ Health. 2006;21:119–38.PubMedCrossRefGoogle Scholar
  73. Perdew GH, Bradfield CA. Mapping the 90 kDa heat shock protein binding region of the Ah receptor. Biochem Mol Biol Int. 1996;39:589–93.PubMedPubMedCentralGoogle Scholar
  74. Peterson KJ, Butterfield NJ. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci USA. 2005;102:9547–52.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Petrulis JR, Perdew GH. The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chem Biol Interact. 2002;141:25–40.PubMedCrossRefGoogle Scholar
  76. Pohjanvirta R, Korkalainen M, Moffat ID, Boutros PC, Okey AB. Role of the AHR and its structure in TCDD toxicity. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 181–96.Google Scholar
  77. Poland A, Glover E, Kende AS. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem. 1976;251:4936–46.PubMedPubMedCentralGoogle Scholar
  78. Poland A, Palen D, Glover E. Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol. 1994;46:915–21.PubMedPubMedCentralGoogle Scholar
  79. Pollenz RS, Wilson SE, Dougherty EJ. Role of endogenous XAP2 protein on the localization and nucleocytoplasmic shuttling of the endogenous mouse Ahb-1 receptor in the presence and absence of ligand. Mol Pharmacol. 2006;70:1369–79.PubMedCrossRefGoogle Scholar
  80. Powell-Coffman JA, Bradfield CA, Wood WB. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc Natl Acad Sci USA. 1998;95:2844–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Public Health England. Dioxins toxicological overview. Prepared by the Toxicology Department CRCE, PHE version 1. 2008.Google Scholar
  82. Puga A, Barnes SJ, Dalton TP, Chang C, Knudsen ES, Maier MA. Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J Biol Chem. 2000;275:2943–50.PubMedCrossRefGoogle Scholar
  83. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317:86–94.PubMedCrossRefGoogle Scholar
  84. Qin H, Powell-Coffman JA. The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. Dev Biol. 2004;270:64–75.PubMedCrossRefGoogle Scholar
  85. Ramadoss P, Perdew GH. Use of 2-azido-3-[125I]iodo-7,8-dibromodibenzo-p-dioxin as a probe to determine the relative ligand affinity of human versus mouse aryl hydrocarbon receptor in cultured cells. Mol Pharmacol. 2004;66:129–36.PubMedCrossRefGoogle Scholar
  86. Ramadoss P, Perdew GH. The transactivation domain of the Ah receptor is a key determinant of cellular localization and ligand-independent nucleocytoplasmic shuttling properties. Biochemistry. 2005;44:11148–59.PubMedCrossRefGoogle Scholar
  87. Rannug A, Rannug U, Rosenkranz HS, Winqvist L, Westerholm R, Agurell E, Grafstrom AK. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. J Biol Chem. 1987;262:15422–7.PubMedPubMedCentralGoogle Scholar
  88. Rannug U, Rannug A, Sjoberg U, Li H, Westerholm R, Bergman J. Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol. 1995;2:841–5.PubMedCrossRefGoogle Scholar
  89. Reyes H, Reisz-Porszasz S, Hankinson O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science. 1992;256:1193–5.PubMedCrossRefGoogle Scholar
  90. Rowatt AJ, Depowell JJ, Powell WH. ARNT gene multiplicity in amphibians: characterization of ARNT2 from the frog Xenopus laevis. J Exp Zool B Mol Dev Evol. 2003;300:48–57.PubMedCrossRefGoogle Scholar
  91. Rowlands JC, Mcewan IJ, Gustafsson JA. Trans-activation by the human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins: direct interactions with basal transcription factors. Mol Pharmacol. 1996;50:538–48.PubMedPubMedCentralGoogle Scholar
  92. Roy NK, Wirgin I. Characterization of the aromatic hydrocarbon receptor gene and its expression in Atlantic tomcod. Arch Biochem Biophys. 1997;344:373–86.PubMedCrossRefGoogle Scholar
  93. Ryan JJ, Norstrom RJ. Occurrence of polychlorinated dibenzodibenzo-p-dioxins and dibenzofurans in humans and major exposure routes. IARC Sci Publ. 1991;108:51–104.Google Scholar
  94. Sartor MA, Schnekenburger M, Marlowe JL, Reichard JF, Wang Y, Fan Y, Ma C, Karyala S, Halbleib D, Liu X, Medvedovic M, Puga A. Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs. Environ Health Perspect. 2009;117:1139–46.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc Natl Acad Sci USA. 1996;93:6731–6.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Signorini S, Gerthoux PM, Dassi C, Cazzaniga M, Brambilla P, Vincoli N, Mocarelli P. Environmental exposure to dioxin: the Seveso experience. Andrologia. 2000;32:263–70.PubMedCrossRefGoogle Scholar
  97. Sonnenfeld M, Ward M, Nystrom G, Mosher J, Stahl S, Crews S. The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development. 1997;124:4571–82.PubMedPubMedCentralGoogle Scholar
  98. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS. The Trichoplax genome and the nature of placozoans. Nature. 2008;454:955–60.PubMedCrossRefGoogle Scholar
  99. Steenland K, Bertazzi P, Baccarelli A, Kogevinas M. Dioxin revisited: developments since the 1997 IARC classification of dioxin as a human carcinogen. Environ Health Perspect. 2004;112:1265–8.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Svensson BG, Nilsson A, Hansson M, Rappe C, Akesson B, Skerfving S. Exposure to dioxins and dibenzofurans through the consumption of fish. N Engl J Med. 1991;324:8–12.PubMedCrossRefGoogle Scholar
  101. Swanson HI, Chan WK, Bradfield CA. DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem. 1995;270:26292–302.PubMedCrossRefGoogle Scholar
  102. The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.CrossRefGoogle Scholar
  103. U.S. EPA. Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds National Academy Sciences (NAS) review draft. Environmental Protection Agency, USA. 2007.Google Scholar
  104. Vogel CF, Sciullo E, Matsumura F. Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines. Biochem Biophys Res Commun. 2007a;363:722–6.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Vogel CF, Sciullo E, Li W, Wong P, Lazennec G, Matsumura F. RelB, a new partner of aryl hydrocarbon receptor-mediated transcription. Mol Endocrinol. 2007b;21:2941–55.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Walker MK, Heid SE, Smith SM, Swanson HI. Molecular characterization and developmental expression of the aryl hydrocarbon receptor from the chick embryo. Comp Biochem Physiol C Toxicol Pharmacol. 2000;126:305–19.PubMedPubMedCentralGoogle Scholar
  107. Wilson SR, Joshi AD, Elferink CJ. The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. J Pharmacol Exp Ther. 2013;345:419–29.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Yasui T, Kim EY, Iwata H, Tanabe S. Identification of aryl hydrocarbon receptor 2 in aquatic birds; cDNA cloning of AHR1 and AHR2 and characteristics of their amino acid sequences. Mar Environ Res. 2004;58:113–8.PubMedCrossRefGoogle Scholar
  109. Yasui T, Kim EY, Iwata H, Franks DG, Karchner SI, Hahn ME, Tanabe S. Functional characterization and evolutionary history of two aryl hydrocarbon receptor isoforms (AhR1 and AhR2) from avian species. Toxicol Sci. 2007;99:101–17.PubMedCrossRefGoogle Scholar
  110. Zhao B, Bohonowych JE, Timme-Laragy A, Jung D, Affatato AA, Rice RH, Di Giulio RT, Denison MS. Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin) receptor. PLoS One. 2013;8:e56860.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Cell, Developmental and Integrative BiologyUniversity of AlabamaBirminghamUSA
  2. 2.University of CincinnatiCincinnatiUSA