Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Giacomo BuscemiEmail author
  • Laura Zannini
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101559


 CDS1;  CHK2;  RAD53

Historical Background

Every day, each cell of our body is subjected to up to 1 million DNA lesions. These alterations are induced by genotoxic agents (e.g., chemicals, radiations), harmful metabolites, or DNA replication mistakes.

To prevent the replication of cells with damaged DNA, all organisms have evolved repair mechanisms that, in eukaryotes, are called the DNA-damage response (DDR). DDR is a network of molecular pathways that detect DNA lesions and, depending on the severity, arrest the cell cycle at checkpoints, repair DNA or, in presence of irreparable damage, initiate a program of permanent duplication arrest (senescence) or cellular suicide (apoptosis) (Ciccia and Elledge 2010).

In human cells, the activation of the DDR (Fig. 1) is promoted when sensor proteins find structural distortions or breaks on the DNA and attract to these sites the serine/threonine-protein kinase ATM (also called ataxia-telangiectasia mutated) and the...
This is a preview of subscription content, log in to check access.


  1. Ahn JY, Li X, Davis HL, Canman CE. Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain. J Biol Chem. 2002;277(22):19389–95.PubMedCrossRefGoogle Scholar
  2. Bucher N, Britten CD. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br J Cancer. 2008;98(3):523–8.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Castedo M, Perfettini JL, Roumier T, Yakushijin K, Horne D, Medema R, et al. The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene. 2004;23(25):4353–61.PubMedCrossRefGoogle Scholar
  4. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J. P53: Twenty Five Years Understanding the Mechanism of Genome Protection. J Physiol Biochem. 2004;60(4):287–307.PubMedCrossRefGoogle Scholar
  6. Gorgoulis VG, Halazonetis TD. Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol. 2010;22(6):816–27.PubMedCrossRefGoogle Scholar
  7. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Magni M, Ruscica V, Restelli M, Fontanella E, Buscemi G, Zannini L. CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget. 2015;6(19):17817–31.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998;282(5395):1893–7.PubMedCrossRefGoogle Scholar
  10. Maya-Mendoza A, Petermann E, Gillespie DA, Caldecott KW, Jackson DA. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 2007;26(11):2719–31.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Momcilovic O, Knobloch L, Fornsaglio J, Varum S, Easley C, Schatten G. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells. PLoS One. 2010;5(10):e13410.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N. Circadian clock control of the cellular response to DNA damage. FEBS Lett. 2010;584(12):2618–25.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Schroeder EA, Raimundo N, Shadel GS. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab. 2013;17(6):954–64.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Stolz A, Ertych N, Bastians H. Loss of the tumour-suppressor genes CHK2 and BRCA1 results in chromosomal instability. Biochem Soc Trans. 2010;38(6):1704–8.PubMedCrossRefGoogle Scholar
  15. Tan Y, Raychaudhuri P, Costa RH. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol. 2007;27(3):1007–16.PubMedCrossRefGoogle Scholar
  16. Turnell AS, Grand RJ. DNA viruses and the cellular DNA-damage response. J Gen Virol. 2012;93(Pt 10):2076–97.PubMedCrossRefGoogle Scholar
  17. Wu X, Webster SR, Chen J. Characterization of tumor-associated Chk2 mutations. J Biol Chem. 2001;276(4):2971–4.PubMedCrossRefGoogle Scholar
  18. Zannini L, Delia D, Buscemi G. CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol. 2014;6(6):442–57.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiosciencesUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Experimental Oncology and Molecular MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly