Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Hidemasa GotoEmail author
  • Hironori Inaba
  • Masaki InagakiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101557


Historical Background

From 1970s to early 1990s, a lot of cell-cycle regulators such as cell division cycle (cdc) or radiation-sensitive (rad) genes had been identified as results of yeast genetic screenings. In 1988, through the analyses of rad9 mutants in budding yeast (Saccharomyces cerevisiae), Weinert and Hartwell first proposed a cell cycle checkpoint that prevents inappropriate progression of the cell cycle when DNA is damaged or incompletely replicated (Weinert and Hartwell 1988). In 1993, Beach and coworkers reported a novel gene that controls G2/M transition after DNA damage (G2/M checkpoint) in the fission yeast (Schizosaccharomyces pombe). Since this gene encoded a Ser/Thr protein kinase, it was named checkpoint kinase 1 (Chk1) (Walworth et al. 1993). By 1997, Chk1 orthologs were identified in budding yeast (Rad27), fruit fly (Grapes [Grp]; Drosophila melanogaster), mouse, and human (CHEK1indicates a gene locus...

This is a preview of subscription content, log in to check access.


  1. Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 1994;8:2401–15.PubMedCrossRefGoogle Scholar
  2. Awasthi P, Foiani M, Kumar A. ATM and ATR signaling at a glance. J Cell Sci. 2015;128:4255–62.  https://doi.org/10.1242/jcs.169730.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bentley NJ, Holtzman DA, Flaggs G, Keegan KS, DeMaggio A, Ford JC, et al. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 1996;15:6641–51.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chen MS, Ryan CE, Piwnica-Worms H. Chk1 Kinase Negatively Regulates Mitotic Function of Cdc25A Phosphatase through 14-3-3 Binding. Mol Cell Biol. 2003;23:7488–97.  https://doi.org/10.1128/mcb.23.21.7488-7497.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cimprich KA, Shin TB, Keith CT, Schreiber SL. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci USA. 1996;93:2850–5.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Enomoto M, Goto H, Tomono Y, Kasahara K, Tsujimura K, Kiyono T, et al. Novel positive feedback loop between Cdk1 and Chk1 in the nucleus during G2/M transition. J Biol Chem. 2009;284:34223–30.  https://doi.org/10.1074/jbc.C109.051540.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Furnari B, Rhind N, Russell P. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science. 1997;277:1495–7.PubMedCrossRefGoogle Scholar
  8. Goto H, Izawa I, Li P, Inagaki M. Novel regulation of checkpoint kinase 1: Is checkpoint kinase 1 a good candidate for anti-cancer therapy? Cancer Sci. 2012;103:1195–200.  https://doi.org/10.1111/j.1349-7006.2012.02280.x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Goto H, Kasahara K, Inagaki M. Novel insights into chk1 regulation by phosphorylation. Cell Struct Funct. 2015;40:43–50.  https://doi.org/10.1247/csf.14017.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jiang K, Pereira E, Maxfield M, Russell B, Goudelock DM, Sanchez Y. Regulation of Chk1 includes chromatin association and 14-3-3 binding following phosphorylation on Ser-345. J Biol Chem. 2003;278:25207–17.  https://doi.org/10.1074/jbc.M300070200.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M. 14-3-3gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J. 2010;29:2802–12.  https://doi.org/10.1038/emboj.2010.157.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Li P, Goto H, Kasahara K, Matsuyama M, Wang Z, Yatabe Y, et al. P90 RSK arranges Chk1 in the nucleus for monitoring of genomic integrity during cell proliferation. Mol Biol Cell. 2012;23:1582–92.  https://doi.org/10.1091/mbc.E11-10-0883.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, et al. Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000;288:1425–9.PubMedCrossRefGoogle Scholar
  14. Matsuyama M, Goto H, Kasahara K, Kawakami Y, Nakanishi M, Kiyono T, et al. Nuclear Chk1 prevents premature mitotic entry. J Cell Sci. 2011;124:2113–9.  https://doi.org/10.1242/jcs.086488.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Peng CY, Graves PR, Ogg S, Thoma RS, Byrnes 3rd MJ, Wu Z, et al. C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ. 1998;9:197–208.PubMedPubMedCentralGoogle Scholar
  16. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997;277:1501–5.CrossRefPubMedGoogle Scholar
  17. Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MA, Wang X, et al. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell. 2010;40:34–49.  https://doi.org/10.1016/j.molcel.2010.09.018.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009;21:245–55.  https://doi.org/10.1016/j.ceb.2009.01.018.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science. 1996;271:357–60.CrossRefGoogle Scholar
  20. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997;277:1497–501.PubMedCrossRefGoogle Scholar
  21. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268:1749–53.CrossRefPubMedGoogle Scholar
  22. Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14:197–210.  https://doi.org/10.1038/nrm3546.CrossRefPubMedGoogle Scholar
  23. Walworth N, Davey S, Beach D. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature. 1993;363:368–71.  https://doi.org/10.1038/363368a0.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Walworth NC, Bernards R. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science. 1996;271:353–6.PubMedCrossRefGoogle Scholar
  25. Weinert TA, Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988;241:317–22.PubMedCrossRefGoogle Scholar
  26. Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer. 2014;134:1013–23.  https://doi.org/10.1002/ijc.28226.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433–9.  https://doi.org/10.1038/35044005.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of BiochemistryAichi Cancer Center Research InstituteNagoyaJapan
  2. 2.Department of Cellular Oncology, Graduate School of MedicineNagoya UniversityNagoyaJapan
  3. 3.Department of PhysiologyMie University School of MedicineTsuJapan