Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Natriuretic Peptide Receptor Type A (NPRA)

  • Natalia L. Rukavina MikusicEmail author
  • María I. Rosón
  • Nicolás M. Kouyoumdzian
  • Silvana M. Cantú
  • Belisario E. Fernández
  • Marcelo R. Choi
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101545


Historical Background

Atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and urodilatin (URO) represent a family of cardiac, vascular, and renal-derived hormones that play an essential role on the regulation of blood pressure, intravascular volume, and electrolyte homeostasis in all mammals. Most of the biological actions of ANP, BNP, and URO are mediated by activation of the natriuretic peptide receptor type A (NPRA), also designated as guanylyl cyclase-A/ natriuretic peptide receptor type A (GC-A/NPRA). Binding of these natriuretic peptides to NPRA leads to activation of the particulate guanylate cyclase (pGC) catalytic domain which generates cGMP-dependent second messenger signaling cascade. An increased level of intracellular cGMP activates three different targets: cGMP-dependent protein kinases (PKGs), cGMP-dependent...

This is a preview of subscription content, log in to check access.


  1. Alexander MR, Knowles JW, Nishikimi T, Maeda N. Increased atherosclerosis and smooth muscle cell hypertrophy in natriuretic peptide receptor A-/-apolipoprotein E-/- mice. Arterioscler Thromb Vasc Biol. 2003;23(6):1077–82.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Choi MR, Citarella MR, Lee BM, Lucano F, Fernández BE. Urodilatin increases renal dopamine uptake: intracellular network involved. J Physiol Biochem. 2011;67(2):243–7.CrossRefPubMedGoogle Scholar
  3. Collins S. A heart-adipose tissue connection in the regulation of energy metabolism. Nat Rev Endocrinol. 2014;10(3):157–63.CrossRefPubMedGoogle Scholar
  4. Díez J. Chronic heart failure as a state of reduced effectiveness of the natriuretic peptide system: implications for therapy. Eur J Heart Fail. 2016. doi:10.1002/ejhf.656.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fernández BE, Correa AH, Choi MR. Atrial natriuretic factor stimulates renal dopamine uptake mediated by natriuretic peptide-type A receptor. Regul Pept. 2005;124(1–3):137–44.CrossRefPubMedGoogle Scholar
  6. Garbers DL, Chrisman TD, Wiegn P, Katafuchi T, Albanesi JP, Bielinski V, et al. Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab. 2006;17(6):251–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Kilić A, Bubikat A, Gassner B, Baba HA, Kuhn M. Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodeling. Endocrinology. 2007;148(9):4162–9.CrossRefPubMedGoogle Scholar
  8. Kishimoto I, Rossi K, Garbers DL. A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA. 2001;98(5):2703–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Koller KJ, Lipari MT, Goeddel DV. Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J Biol Chem. 1993;268(8):5997–6003.PubMedGoogle Scholar
  10. Kuribayashi K, Kitaoka Y, Kumai T, Munemasa Y, Kitaoka Y, Isenoumi K, et al. Neuroprotective effect of atrial natriuretic peptide against NMDA-induced neurotoxicity in the rat retina. Brain Res. 2006;1071(1):34–41.CrossRefPubMedGoogle Scholar
  11. Li Z, Wang JW, Wang WZ, Zhi XF, Zhang Q, Li BW, et al. Natriuretic peptide receptor A inhibition suppresses gastric cancer development through reactive oxygen species-mediated G2/M cell cycle arrest and cell death. Free Radic Biol Med. 2016;99:593–607. doi:10.1016/j.freeradbiomed.2016.08.019.CrossRefPubMedGoogle Scholar
  12. Madhani M, Scotland RS, MacAllister RJ, Hobbs AJ. Vascular natriuretic peptide receptor-linked particulate guanylate cyclases are modulated by nitric oxide-cyclic GMP signalling. Br J Pharmacol. 2003;139(7):1289–96.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Mahinrad S, de Craen AJ, Yasar S, van Heemst D, Sabayan B. Natriuretic peptides in the central nervous system: Novel targets for cognitive impairment. Neurosci Biobehav Rev. 2016;68:148–56.CrossRefPubMedGoogle Scholar
  14. Moro C, Lafontan M. Natriuretic peptides and cGMP signaling control of energy homeostasis. Am J Physiol Heart Circ Physiol. 2013;304(3):H358–68.CrossRefPubMedGoogle Scholar
  15. Nakayama T, Soma M, Takahashi Y, Rehemudula D, Kanmatsuse K, Furuya K. Functional deletion mutation of the 5'-flanking region of type A human natriuretic peptide receptor gene and its association with essential hypertension and left ventricular hypertrophy in the Japanese. Circ Res. 2000;86(8):841–5.CrossRefPubMedGoogle Scholar
  16. Pandey KN. Guanylyl cyclase/atrial natriuretic peptide receptor-A: role in the pathophysiology of cardiovascular regulation. Can J Physiol Pharmacol. 2011;89(8):557–73.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Pandey KN. Endocytosis and trafficking of natriuretic peptide receptor-A: potential role of short sequence motif. Membranes (Basel). 2015;5(3):253–87.CrossRefGoogle Scholar
  18. Potter LR. Guanylyl cyclase structure, function and regulation. Cell Signal. 2011;23(12):1921–6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Rubattu S, Bigatti G, Evangelista A, Lanzani C, Stanzione R, Zagato L, et al. Association of atrial natriuretic peptide and type a natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension. J Am Coll Cardiol. 2006;48(3):499–505.CrossRefPubMedGoogle Scholar
  20. Rukavina Mikusic NL, Kravetz MC, Kouyoumdzian NM, Della Penna SL, Rosón MI, Fernández BE, et al. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. J Signal Transduct. 2014;2014:731350.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, et al. Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest. 2005;115(6):1666–74.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Schlueter N, de Sterke A, Willmes DM, Spranger J, Jordan J, Birkenfeld AL. Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol Ther. 2014;144(1):12–27. doi:10.1016/j.pharmthera.2014.04.007.CrossRefPubMedGoogle Scholar
  23. Vatta MS, Rodríguez-Fermepín M, Durante G, Bianciotti LG, Fernández BE. Atrial natriuretic factor inhibits norepinephrine biosynthesis and turnover in the rat hypothalamus. Regul Pept. 1999;85(2–3):101–7.CrossRefPubMedGoogle Scholar
  24. Wang X, Raulji P, Mohapatra SS, Patel R, Hellermann G, Kong X, et al. Natriuretic peptide receptor a as a novel target for prostate cancer. Mol Cancer. 2011;10:56. doi:10.1186/1476-4598-10-56.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Zhang J, Zhao Z, Wang J. Natriuretic peptide receptor A as a novel target for cancer. World J Surg Oncol. 2014;12:174.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Zois NE, Bartels ED, Hunter I, Kousholt BS, Olsen LH, Goetze JP. Natriuretic peptides in cardiometabolic regulation and disease. Nat Rev Cardiol. 2014;11(7):403–12.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Natalia L. Rukavina Mikusic
    • 1
    Email author
  • María I. Rosón
    • 1
  • Nicolás M. Kouyoumdzian
    • 1
  • Silvana M. Cantú
    • 2
  • Belisario E. Fernández
    • 1
  • Marcelo R. Choi
    • 1
    • 3
  1. 1.Instituto de Investigaciones Cardiológicas “Prof. Dr. Alberto C. Taquini”, ININCA, UBA-CONICETBuenos AiresArgentina
  2. 2.Universidad de Buenos Aires, Facultad de Farmacia y BioquímicaCátedra de Anatomía e HistologíaBuenos AiresArgentina
  3. 3.Cátedra de Anatomía e Histología, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos AiresArgentina