Skip to main content

Phosphatidylinositol 4-Kinase (PI4K2B)

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

PIK42B; PI4KIIB

Historical Background

Phosphatidylinositol kinase activity was initially defined by Mitchell and colleagues as one that could transfer the γ-phosphoryl group of 32P-labeled ATP to phosphatidylinositol in membrane fractions derived from tissues (Michell et al. 1967). Two decades later, studies involving the use of cell and tissue extracts revealed that phosphatidylinositol kinase activity could be separated into three distinct types based on sensitivity to inhibitors and migration in a sucrose gradient (Whitman et al. 1987). These were described as the type I, II, and III phosphatidylinositol kinases. The type I enzyme was later found to phosphorylate the D3 position of the myo-inositol moiety of phosphatidylinositol and is now referred to as phosphatidylinositol 3-kinase (PI3K). The type II and III enzymes phosphorylate the D4 position but exhibit different biochemical characteristics such as sensitivities to inhibitors and migration in a sucrose gradient. The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aytes A, et al. PI4K2β and STIM2 are two new relevant genes for colorectal cancer. Cancer Research. 2008;68(9 Supplement):LB–169. Available at: http://cancerres.aacrjournals.org/content/68/9_Supplement/LB-169.abstract

  • Balla A, Balla T. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends in cell biology. 2006;16(7):351–61. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16793271. Accessed 1 Oct 2014.

    Article  PubMed  CAS  Google Scholar 

  • Barylko B, et al. A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. The Journal of biological chemistry. 2001;276(11):7705–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11244087. Accessed 23 Oct 2014.

    Article  PubMed  CAS  Google Scholar 

  • Barylko B, et al. Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase II{alpha}. J Biol Chem. 2009;284(15):9994–10003. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2665123&tool=pmcentrez&rendertype=abstract. Accessed 23 Oct 2014.

    Google Scholar 

  • Baumlova A, et al. The crystal structure of the phosphatidylinositol 4-kinase IIa. EMBO Rep. 2014;15(10):1085–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffioen M, et al. Identification of phosphatidylinositol 4-kinase type II beta as HLA class II-restricted target in graft versus leukemia reactivity. Proc Natl Acad Sci USA. 2008;105(10):3837–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeschke A, et al. Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proc Natl Acad Sci. 2015;112(15):201423456. Available at: http://www.pnas.org/content/early/2015/03/26/1423456112.full.pdf.

    Article  CAS  Google Scholar 

  • Jung G, et al. Stabilization of phosphatidylinositol 4-kinase type IIbeta by interaction with Hsp90. J Biol Chem. 2011;286(14):12775–84. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3069477&tool=pmcentrez&rendertype=abstract. Accessed 18 Jan 2015.

    Google Scholar 

  • Klima M, et al. The high-resolution crystal structure of phosphatidylinositol 4-kinase II b and the crystal structure of phosphatidylinositol 4-kinase II a containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design research papers. Acta Cryst. 2015;D71:1555–63.

    Google Scholar 

  • Mazzocca A, Liotta F, Carloni V. Tetraspanin CD81-regulated cell motility plays a critical role in intrahepatic metastasis of hepatocellular carcinoma. Gastroenterology. 2008;135(1):244–256.e1. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18466772. Accessed 24 Mar 2014.

    Article  PubMed  CAS  Google Scholar 

  • Michell RH, et al. Characteristics of rat liver phosphatidylinositol kinase and its presence in the plasma membrane. Biochimica et biophysica acta. 1967;144(BBA 55388):649–58.

    Article  CAS  PubMed  Google Scholar 

  • Moon RT. Wnt/beta-catenin pathway. Sci STKE. 2005;2005(271):cm1. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15713948. Accessed 12 Oct 2014.

  • Sinha RK, et al. Type II phosphatidylinositol 4-kinase β is an integral signaling component of early T cell activation mechanisms. Biochimie. 2013;95(8):1560–6. Available at: http://dx.doi.org/10.1016/j.biochi.2013.04.005

    Article  PubMed  CAS  Google Scholar 

  • Wei YJ, et al. Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. The Journal of biological chemistry. 2002;277(48):46586–93. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12324459. Accessed 17 July 2014.

    Article  PubMed  CAS  Google Scholar 

  • Whitman M, et al. Evidence for two distinct phosphatidylinositol kinases fibroblasts Implications for cellular regulation. Biochem J. 1987;247:165–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wieffer M, et al. PI4K2β/AP-1-based TGN-endosomal sorting regulates Wnt signaling. Curr Biol. 2013;23(21):2185–90. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0960982213011330. Accessed 6 Nov 2013.

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, et al. Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca2+ store vesicles. Nucleus. 2014;5(4):341–51. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4152348&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng H-T, et al. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma? World J Gastroenterol. 2008;14(1):90–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, et al. Molecular insights into the membrane-associated phosphatidylinositol 4-kinase II alpha. Nat Commun. 2014;5:3552. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3974213&tool=pmcentrez&rendertype=abstract. Accessed 8 Nov 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane Minogue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alli-Balogun, G., Minogue, S. (2018). Phosphatidylinositol 4-Kinase (PI4K2B). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101524

Download citation

Publish with us

Policies and ethics