Skip to main content

p38 Gamma MAPK

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

ERK6 (extracellular signal-regulated kinase 6); MAPK12; p38γ; p38γ MAPK (p38γ mitogen-activated protein kinase); SAPK3 (Stress-activated protein kinase 3)

Historical Background

p38 mitogen-activated protein kinases (p38 MAPKs) are a group of serine/threonine protein kinases, which together with extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs) MAPKs convert upstream signals into cellular responses. Four mammalian p38 MAPK family proteins (α, β, γ, and δ) are encoded by four separate genes and play an overlapping, distinct, and even opposite role in regulating cell growth, cell death, and differentiation (Ono and Han 2000; Kumar et al. 2003; Cuenda and Rousseau 2007; Loesch and Chen 2008). Among 15 classical and nonclassical MAPKs, p38γ is an only MAPK with its C-terminus containing an unique PDZ-binding motif (Lechner et al. 1996; Li et al. 1996; Mertens et al. 1996; Cargnello and Roux 2011). p38γ signals downstream of MAPK kinase 6 (MKK6) and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi T, Robertson NM, Abdollahi A, Litwack G. Inhibition of TRAIL-induced apoptosis by IL-8 is mediated by the p38-MAPK pathway in OVCAR3 cells. Apoptosis. 2003;10:1383–93.

    Article  CAS  Google Scholar 

  • Angel P, Hattori K, Smeal T, Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988;55:875–85.

    Article  CAS  PubMed  Google Scholar 

  • Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K. GoBele Uea. Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med. 2012;209:697–711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boppart MD, Asp S, Wojtaszewski JF, Fielding RA, Mohr T, Goodyear LJ. Marathon running transiently increases c-Jun NH2-terminal kinase and p38 activities in human skeletal muscle. J Physiol. 2000;526:663–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buee-Scherrer V, Goedert M. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. FEBS Lett. 2002;515:151–4.

    Article  CAS  PubMed  Google Scholar 

  • Bulavin DV, Fornace AJ. p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res. 2004;92:95–118.

    Article  CAS  PubMed  Google Scholar 

  • Cain WC, Stuart RW, Lefkowitz DL, Starnes JD, Margolin S, Lefkowitz SS. Inhibition of tumor necrosis factor and subsequent endotoxin shock by pirfenidone. Int J Immunopharmacol. 1998;20:685–95.

    Article  CAS  PubMed  Google Scholar 

  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen AY, Liu LF. DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol. 1994;34:191–218.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Macara IG. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol. 2005;7:262–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Shu J, Stacey DW. Oncogenic transformation potentiates apoptosis induction, S-phase arrest and WAF1 induction by etoposide. Oncogene. 1997;15:1643–51.

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Templeton D, Suttle DP, Stacey D. Ras stimulates DNA topoisomerase IIα through MEK: a link between oncogenic signaling and a therapeutic target. Oncogene. 1999;18:7149–60.

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Hitomi M, Han J, Stacey DW. The p38 pathway provides negative feedback to Ras proliferative signaling. J Biol Chem. 2000;275:38973–80.

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Lin S, Wu M, Ho M, Santhanam A, Chou C, et al. Reciprocal allosteric regulation of p38γ and PTPN3 involves a PDZ domain-modulated complex formation. Sci Signal. 2014;7:ra98.

    Article  CAS  PubMed  Google Scholar 

  • Chiariello M, Marinissen MJ, Gutkind JS. Multiple mitogen-activated protein kinase signaling pathways connect the Cot oncoprotein to the c-jun promoter and to cellular transformation. Mol Cell Biol. 2000;20:1747–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  PubMed  CAS  Google Scholar 

  • Conrad PW, Rust RT, Han J, Millhorn DE, Beitner-Johnson D. Selective activation of p38α and p38γ by hopoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J Biol Chem. 1999;274:23570–6.

    Article  CAS  PubMed  Google Scholar 

  • Cuenda A, Rousseau S. p38 MAP-Kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773:1358–75.

    Article  CAS  PubMed  Google Scholar 

  • Cuenda A, Cohen P, Buee-Scherrer V, Goedert M. Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J. 1997;16:295–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Reino P, Alsina-Beauchamp D, Escos A, Cerezo-Guisado MI, Risco A, Aparicio N. Pro-oncogenic role of alternative p38 mitogen-activated protein kinases p38γ and p38δ, linking inflammation and cancer in colitis-associated colon cancer. Cancer Res. 2014;74:6150–60.

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Gabali AM, Jenson SD, Lim MS, Elenitoba-Johnson KSJ. p38 mitogen activated protein kinase expression and regulation by interleukin-4 in human B cell non-Hodgkin lymphomas. J Hematop. 2009;2:195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell. 2007;11:191–205.

    Article  CAS  PubMed  Google Scholar 

  • Fanning AS, Anderson JM. PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest. 1999;103:767–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franco DL, Nojek IM, Molinero L, Coso OA, Costas MA. Osmotic stress sensitizes naturally resistant cells to TNF-α-induced apoptosis. Cell Death Differ. 2002;9:1090–8.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie MA, Grand FL, Scime A, Kuang S, von Maltzahn J, Seale V, et al. p38γ-dependent gene silencing restricts entry into the myogenic differentiation program. J Cell Biol. 2009;187:991–1005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett. 1997;409:57–62.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Teran B, Matesanz N, Nikolic I, Verdugo MA, Sreeramkumar V. Hernandez-Cosido Lea. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO J. 2016;35:536–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gujral TS, Karp ES, Chan M, Chang BH, MacBeath G. Family-wide investigation of PDZ domain-mediated protein-protein interactions implicates β-catenin in maintaining the integrity of tight junction. Chem Biol. 2013;20:816–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta J, Barantes IB, Igea A, Sakellariou S, Pateras I, Gorgoulis VG. Dual function of p38α MAPK in colon cancer: suppression of colities-associated tumor initiation but requirement for cancer cell survival. Cancer Cell. 2014;25:484–550.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Cuenda A, Spillantini MG, Thomas GM, Buee-Scherrer V, Cohen P, et al. Stress-activated protein kinase-3 interacts with the PDZ domain of α1-syntrophin: a mechanism for specific substrate recognition. J Biol Chem. 1999;274:12626–31.

    Article  PubMed  CAS  Google Scholar 

  • Ho RC, Alcazar O, Fujii N, Hirshman MF, Goodyear LJ. p38γ MAPK regulation of glucose transporter expression and glucose uptake in Ly myotubes and mouse skeletal muscle. Am J Phys Regul Integr Comp Phys. 2003;286:R342–R9.

    Google Scholar 

  • Hou S, Lepp A, Chen G. p38 gamma MAP kinase. UCSD-Nature Molecular Pages. 2010a; https://doi.org/10.1038/mp.a001720.01.

    Article  Google Scholar 

  • Hou SW, Zhi H, Pohl N, Loesch M, Qi X, Li R, et al. PTPH1 dephosphorylates and cooperates with p38γ MAPK to increases Ras oncogenesis through PDZ-mediated interaction. Cancer Res. 2010b;70:2901–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou S, Padmanaban S, Qi X, Leep A, Mirza S, Chen G. p38g MAPK signals through phosphorylating its phosphatase PTPH1 in regulating Ras oncogenesis and stress response. J Biol Chem. 2012;287:27895–905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennedy NJ, Cellurale C, Davis RJ. A radical role for p38 MAPK in tumor initiation. Cancer Cell. 2007;11:101–3.

    Article  CAS  PubMed  Google Scholar 

  • King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92.

    Article  CAS  PubMed  Google Scholar 

  • Kok M, Holm-Wigerup C, Hauptmann M, Michalides R, Stal O, Linn S, et al. Estrogen receptor-α phosphorylation at serine-118 and tamoxifen response in breast cancer. J Natl Cancer Inst. 2009;101:1725–9.

    Article  CAS  PubMed  Google Scholar 

  • Kolch W, Halasz M, Granovskaya M. N. KB. The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer. 2015;15:515–27.

    Article  CAS  PubMed  Google Scholar 

  • Korb A, Tohidast-Akrad M, Cetin E, Axmann R, Smolen J, Schett G. Differential tissue expression and activation of p38 MAPK α, β, γ, and δ isoforms in rheumatoid arthritis. Arthritis Rheum. 2006;54:2745–56.

    Article  CAS  PubMed  Google Scholar 

  • Kukkonen-Macchi A, Sicora O, Kaczynska K, Oetken-Lindholm C, Pouwels J, Laine L, et al. Loss of p38γ MAPK induces pleitropic mitotic defects and massive cell death. J Cell Sci. 2011;124:216–27.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003;2:717–26.

    Article  CAS  PubMed  Google Scholar 

  • Kwong J, Hong L, Liao R, Deng Q, Han J, Sun P. p38α and p38γ mediates oncogenic ras-induced senescence through different mechanisms. J Biol Chem. 2009;284:11237–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lassar AB. The p38 MAPK family, a pushmi-pullyu of skeletal muscle differentiation. J Cell Biol. 2009;187:941–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lechner C, Zahalka MA, Giot J, Moller NP, Ullrich A. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci. 1996;93:4355–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee ST, Feng M, Wei Y, Li Y, Guan P, Jiang X, et al. Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis. Proc Natl Asso Sci USA. 2013;110:11121–6.

    Article  Google Scholar 

  • Li Z, Jiang Y, Ulevitch RJ, Han J. The primary structure of p38γ: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun. 1996;228:334–40.

    Article  CAS  PubMed  Google Scholar 

  • Loesch M, Chen G. The p38 MAPK stress pathway as a tumor suppressor or more? Front Biosci. 2008;13:3581–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loesch M, Zhi H, Hou S, Qi X, Li R, Basir Z, et al. p38γ MAPK cooperates with c-Jun in trans-activating matrix metalloproteinase 9. J Biol Chem. 2010;285:15149–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long DL, Loeser RF. p38g mitogen-activated protein kinase suppresses chondrocyte production of MMP-13 in response to catabolic stimulation. Osteoarthr Cartil. 2010;18:1203–10.

    Article  CAS  Google Scholar 

  • Ma S, Yin N, Qi X, Pfister SL, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320–33.

    PubMed  PubMed Central  Google Scholar 

  • Marinissen MJ, Chiariello M, Pallante M, Gutkind JS. A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol. 1999;19:4289–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marinissen MJ, Chiariello M, Gutkind JS. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38γ) MAP kinase pathway. Genes Dev. 2001;15:535–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng F, Zhang H, Liu G, Kreike B, Chen W, Sethi S, et al. p38γ mitogen-activated protein kinase contributes to oncogenic properties maintenance and resistance to poly (ADP-ribose)-polymerase-1 inhibition in breast cancer. Neoplasia. 2011;13:472–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mertens S, Craxton M, Goedert M. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett. 1996;383:273–6.

    Article  CAS  PubMed  Google Scholar 

  • Monteriro AC, Sumagin R, Rankin CR, Leoni G, Mina MJ, Reiter DM. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Mol Biol Cell. 2013;24:2849–60.

    Article  Google Scholar 

  • Moran N. p38 kinase inhibitor approved for idiopathic pulmonary fibrosis. Nat Biotechnol. 2011;29:301.

    Article  CAS  PubMed  Google Scholar 

  • Noble PW, Albera C, Bradford W, Costabel U, Glassberg MK, Kardatzke D, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377:1760–9.

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Han J. The p38 signal transduction pathway activation and function. Cell Signal. 2000;12:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Otsuka M, Kang YJ, Ren J, Jiang H, Wang Y, Omata M, et al. Distinct effects of p38α deletion in myeloid lineage and gut epithelia in mouse models of inflammatory bowel disease. Gastroenterology. 2010;138:1255–65.

    Article  PubMed  CAS  Google Scholar 

  • Ozes O, Blatt LM, Seiwert SD. Use of pirfenidone in therapeutic regimens. United States Patent-US 7,407,973 B2. 2008;Aug. 5th:1–46.

    Google Scholar 

  • Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P, et al. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38α in abrogating myoblast proliferation. EMBO J. 2007;26:1245–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters MF, Adams ME, Froehner SC. Differential association of syntrophin pairs with the dystrophin complex. J Cell Biol. 1997;138:81–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pillaire M, Nebreda AR, Darbon J. Cisplatin and UV radiation induce activation of the stress-activated protein kinase p38γ in human melanoma cells. Biochem Biophys Res Commun. 2000;278:724–8.

    Article  CAS  PubMed  Google Scholar 

  • Pogozelski A, Geng T, Li P, Lira V, Zhang M, Chi JT, et al. p38γ mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One. 2009;4:e7934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pritchard KI, Messersmith H, Elavathil L, Trudeau M, O’Malley F, DhesyThind B. HER-2 and topoisomerase II as predictors of response to chemotherapy. J Clin Oncol. 2008;26:736–44.

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Tang J, Pramanik R, Schultz RM, Shirasawa S, Sasazuki T, et al. p38 MAPK activation selectively induces cell death in K-ras mutated human colon cancer cells through regulation of vitamin D receptor. J Biol Chem. 2004;279:22138–44.

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Tang J, Loesch M, Pohl N, Alkan S, Chen G. p38γ MAPK integrates signaling cross-talk between Ras and estrogen receptor to increase breast cancer invasion. Cancer Res. 2006;66:7540–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi X, Pohl NM, Loesch M, Hou S, Li R, Qin JZ, et al. p38α antagonizes p38γ activity through c-Jun-dependent ubiquitin-proteasome pathways in regulating Ras transformation and stress response. J Biol Chem. 2007;282:31398–408.

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Hou S, Lepp A, Li R, Basir Z, Lou Z, et al. Phosphorylation and stabilization of topoisomerase IIα by p38γ MAPK sensitize breast cancer cells to its poisons. J Biol Chem. 2011;286:35883–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi X, Zhi H, Lepp A, Wang P, Huang J, Basir Z, et al. p38γ mitogen-activated protein kinase (MAPK) confers breast cancer hormone sensitivity by switching estrogen receptor (ER) signaling from classical to nonclassical pathway via stimulating ER phosphorylation and c-Jun transcription. J Biol Chem. 2012;287:14681–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi XM, Xie C, Hou S, Li G, Yin N, Dong L, et al. Identification of a ternary protein-complex as a therapeutic target for K-Ras-dependent colon cancer. Oncotarget. 2014;5:4269–82.

    PubMed  PubMed Central  Google Scholar 

  • Qi XM, Yin N, Ma S, Lepp A, Tang J, Jing W. p38γ MAPK is a therapeutic target for triple-negative breast cancer by stimulation of cancer stem-like cell expansion. Stem Cells. 2015;33:2738–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richeldi L, Yasothan U, Kirkpatrick DS. Pirfenidone. Nat Rev Drug Discov. 2011;10:489–90.

    Article  CAS  PubMed  Google Scholar 

  • Risco A, Fresno C, Mambol A, Alsina-Beauchamp D, MacKenzie KF, Yang HA. p38γ and p38δ kinases regulate the toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation. Proc Natl Acad Sci U S A. 2012;109:11200–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenthal DT, Lyer H, Escudero S, Bao L, Wu Z, Ventura AC, et al. p38γ promotes breast cancer motility and metastasis through regulation of RhoC GTPase, cytoskeletal architecture, and a novel leading edge behavior. Cancer Res. 2011;71:6338–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabio G, Reuver S, Feijoo C, Hasegawa M, Thomas GM, Centeno F, et al. Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38γ and ERK1/ERK2. Biochem J. 2004;380:19–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabio G, Simon J, Arthur C, Kuma Y, Peggie M, Carr J, et al. p38γ regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J. 2005;24:1134–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabio G, Cerezo-Guisado MI, Reino P, Inesta-Vaquera FA, Rousseau S, Arthur JSC, et al. p38γ regulates interactin of nuclear PSF and RNA with the tumor-suppressor hDlg in response to osmotic shock. J Cell Sci. 2010;123:2596–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakabe K, Teramoto H, Zohar M, Behbahani B, Miyazaki H, Chikumi H, et al. Potent transforming activity of the small GTP-binding protein Rit in NIH 3T3 cells: evidence for a role of a p38γ-dependent signaling pathway. FEBS Lett. 2002;511:15–20.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer CJ, Ruhrmund DW, Pan L, Selwert SD, Kossen K. Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev. 2011;20:85–97.

    Article  CAS  PubMed  Google Scholar 

  • Schlieker C, Mogk A, Bukau B. A PDZ switch for a cellular stress response. Cell. 2004;117:417–20.

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Simon M, Vucelic G, Hicks MJ, Plinkert PK, Koitchev A, et al. The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP-1-dependent promoter activation. Exp Cell Res. 2001;271:344–55.

    Article  CAS  PubMed  Google Scholar 

  • Skliris GP, Nugent Z, Watson PH, Murphy LC. Estrogen receptor alpha phosphorylated at tyrosine 537 is associated with poor clinical outcome in breast cancer patients treated with tamoxifen. Horm Canc. 2010;1:215–21.

    Article  CAS  Google Scholar 

  • Smock R, Gierasch LM. Sending signals dynamically. Science. 2009;324:198–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sos M, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest. 2009;119:1727–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suresh PS, Ma S, Migliaccio A, Chen G. Protein-tyrosine phosphatase H1 increases breast cancer sensitivity to antiestrogens by dephosphorylating estrogen receptor at tyr537. Mol Cancer Ther. 2014;13:230–8.

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Qi X, Mercola D, Han J, Chen G. Essential role of p38γ in K-Ras transformation independent of phosphorylation. J Biol Chem. 2005;280:23910–7.

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Yuan W, Fujita N, Wang J, Wang H, Shapiro IM, et al. Inflammatory cytokines associated with degenerative disc disease control aggrecanase-1 (ADAMTS-4) expression in nucleus pulposus cells through MAPK and NF-κB. Am J Pathol. 2013;182:2310–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7:833–46.

    Article  PubMed  CAS  Google Scholar 

  • Tortorella LL, Lin CB, Pilch PF. ERK6 is expressed in a developmentally regulated manner in rodent skeletal muscle. Biochem Biophys Res Commun. 2003;306:163–8.

    Article  CAS  PubMed  Google Scholar 

  • Visner GA, Liu F, Bizargity P, Liu H, Liu K, Yang J, et al. Pirfenidone inhibits T cell activation, proliferation, cytokine and chemokine production, and host alloresponses. Transplantation. 2009;88:330–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakeman D, Schneider JE, Liu J, Wandu WS, Erwin CR, Guo J, et al. Deletion of p38-alpha mitogen-activated protein kinase within the intestinal epithelium promotes colon tumorigenesis. Surgery. 2012;152:286–93.

    Article  PubMed  Google Scholar 

  • Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C, et al. Involvement of the MKK6-p38γ cascade in γ-radiation-induced cell cycle arrest. Mol Cell Biol. 2000;20:4543–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu CC, Wu X, Han J, Sun P. p38g regulates UV-induced checkpoint signaling and repair of UV-induced DNA damage. Protein Cell. 2010;1:573–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin N, Qi X, Tsai S, Lu Y, Basir Z, Oshima K. p38γ MAPK is required for inflammation-associated colon tumorigenesis. Oncogene. 2016;35:1039–48.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Harrison JS, Studzinski GP. Isoforms of p38MAPK gamma and delta contribute to differentiation of human AML cells induced by 1,25-dihydroxyvitamin D3. Exp Cell Res. 2011;317:117–30.

    Article  CAS  PubMed  Google Scholar 

  • Zur R, Garcia-Ibanez L, Nunez-Buiza A, Aparicio N, Liappas G, Escos A. Combined deletion of p38γ and p38δ reduces skin inflammation and protects from carcinogenesis. Oncotarget. 2015;6:12920–35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work in Chen lab was supported by grants from National Institutes of Health, Department of Veterans Affair (VA), and Department of Defense (DoD). We would like to acknowledge the former lab members Drs. Jung Tang, Rocky Pramanik, Song-Wang Hou, Mathew Loesch, Adrienne Lepp, Padmanaban S. Suresh, Shao Ma, and Ning Yin for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qi, XM., Wang, F., Chen, G. (2018). p38 Gamma MAPK. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101521

Download citation

Publish with us

Policies and ethics