Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

p38 Gamma MAPK

  • Xiao-Mei Qi
  • Fang Wang
  • Guan Chen
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101521

Synonyms

Historical Background

p38 mitogen-activated protein kinases (p38 MAPKs) are a group of serine/threonine protein kinases, which together with extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs) MAPKs convert upstream signals into cellular responses. Four mammalian p38 MAPK family proteins (α, β, γ, and δ) are encoded by four separate genes and play an overlapping, distinct, and even opposite role in regulating cell growth, cell death, and differentiation (Ono and Han 2000; Kumar et al. 2003; Cuenda and Rousseau 2007; Loesch and Chen 2008). Among 15 classical and nonclassical MAPKs, p38γ is an only MAPK with its C-terminus containing an unique PDZ-binding motif (Lechner et al. 1996; Li et al. 1996; Mertens et al. 1996; Cargnello and Roux 2011). p38γ signals downstream of MAPK kinase 6 (MKK6)...
This is a preview of subscription content, log in to check access.

Notes

Acknowledgements

The work in Chen lab was supported by grants from National Institutes of Health, Department of Veterans Affair (VA), and Department of Defense (DoD). We would like to acknowledge the former lab members Drs. Jung Tang, Rocky Pramanik, Song-Wang Hou, Mathew Loesch, Adrienne Lepp, Padmanaban S. Suresh, Shao Ma, and Ning Yin for their contributions.

References

  1. Abdollahi T, Robertson NM, Abdollahi A, Litwack G. Inhibition of TRAIL-induced apoptosis by IL-8 is mediated by the p38-MAPK pathway in OVCAR3 cells. Apoptosis. 2003;10:1383–93.CrossRefGoogle Scholar
  2. Angel P, Hattori K, Smeal T, Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988;55:875–85.CrossRefPubMedGoogle Scholar
  3. Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K. GoBele Uea. Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med. 2012;209:697–711.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Boppart MD, Asp S, Wojtaszewski JF, Fielding RA, Mohr T, Goodyear LJ. Marathon running transiently increases c-Jun NH2-terminal kinase and p38 activities in human skeletal muscle. J Physiol. 2000;526:663–39.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Buee-Scherrer V, Goedert M. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. FEBS Lett. 2002;515:151–4.CrossRefPubMedGoogle Scholar
  6. Bulavin DV, Fornace AJ. p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res. 2004;92:95–118.CrossRefPubMedGoogle Scholar
  7. Cain WC, Stuart RW, Lefkowitz DL, Starnes JD, Margolin S, Lefkowitz SS. Inhibition of tumor necrosis factor and subsequent endotoxin shock by pirfenidone. Int J Immunopharmacol. 1998;20:685–95.CrossRefPubMedGoogle Scholar
  8. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen AY, Liu LF. DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol. 1994;34:191–218.CrossRefPubMedGoogle Scholar
  10. Chen X, Macara IG. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol. 2005;7:262–9.CrossRefGoogle Scholar
  11. Chen G, Shu J, Stacey DW. Oncogenic transformation potentiates apoptosis induction, S-phase arrest and WAF1 induction by etoposide. Oncogene. 1997;15:1643–51.CrossRefPubMedGoogle Scholar
  12. Chen G, Templeton D, Suttle DP, Stacey D. Ras stimulates DNA topoisomerase IIα through MEK: a link between oncogenic signaling and a therapeutic target. Oncogene. 1999;18:7149–60.CrossRefPubMedGoogle Scholar
  13. Chen G, Hitomi M, Han J, Stacey DW. The p38 pathway provides negative feedback to Ras proliferative signaling. J Biol Chem. 2000;275:38973–80.CrossRefPubMedGoogle Scholar
  14. Chen K, Lin S, Wu M, Ho M, Santhanam A, Chou C, et al. Reciprocal allosteric regulation of p38γ and PTPN3 involves a PDZ domain-modulated complex formation. Sci Signal. 2014;7:ra98.CrossRefPubMedGoogle Scholar
  15. Chiariello M, Marinissen MJ, Gutkind JS. Multiple mitogen-activated protein kinase signaling pathways connect the Cot oncoprotein to the c-jun promoter and to cellular transformation. Mol Cell Biol. 2000;20:1747–58.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006;127:469–80.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Conrad PW, Rust RT, Han J, Millhorn DE, Beitner-Johnson D. Selective activation of p38α and p38γ by hopoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J Biol Chem. 1999;274:23570–6.CrossRefPubMedGoogle Scholar
  18. Cuenda A, Rousseau S. p38 MAP-Kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773:1358–75.CrossRefPubMedGoogle Scholar
  19. Cuenda A, Cohen P, Buee-Scherrer V, Goedert M. Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J. 1997;16:295–305.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Del Reino P, Alsina-Beauchamp D, Escos A, Cerezo-Guisado MI, Risco A, Aparicio N. Pro-oncogenic role of alternative p38 mitogen-activated protein kinases p38γ and p38δ, linking inflammation and cancer in colitis-associated colon cancer. Cancer Res. 2014;74:6150–60.CrossRefPubMedGoogle Scholar
  21. Ding H, Gabali AM, Jenson SD, Lim MS, Elenitoba-Johnson KSJ. p38 mitogen activated protein kinase expression and regulation by interleukin-4 in human B cell non-Hodgkin lymphomas. J Hematop. 2009;2:195–204.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell. 2007;11:191–205.CrossRefGoogle Scholar
  23. Fanning AS, Anderson JM. PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest. 1999;103:767–72.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Franco DL, Nojek IM, Molinero L, Coso OA, Costas MA. Osmotic stress sensitizes naturally resistant cells to TNF-α-induced apoptosis. Cell Death Differ. 2002;9:1090–8.CrossRefPubMedGoogle Scholar
  25. Gillespie MA, Grand FL, Scime A, Kuang S, von Maltzahn J, Seale V, et al. p38γ-dependent gene silencing restricts entry into the myogenic differentiation program. J Cell Biol. 2009;187:991–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett. 1997;409:57–62.CrossRefPubMedGoogle Scholar
  27. Gonzalez-Teran B, Matesanz N, Nikolic I, Verdugo MA, Sreeramkumar V. Hernandez-Cosido Lea. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO J. 2016;35:536–52.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gujral TS, Karp ES, Chan M, Chang BH, MacBeath G. Family-wide investigation of PDZ domain-mediated protein-protein interactions implicates β-catenin in maintaining the integrity of tight junction. Chem Biol. 2013;20:816–27.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gupta J, Barantes IB, Igea A, Sakellariou S, Pateras I, Gorgoulis VG. Dual function of p38α MAPK in colon cancer: suppression of colities-associated tumor initiation but requirement for cancer cell survival. Cancer Cell. 2014;25:484–550.CrossRefPubMedGoogle Scholar
  30. Hasegawa M, Cuenda A, Spillantini MG, Thomas GM, Buee-Scherrer V, Cohen P, et al. Stress-activated protein kinase-3 interacts with the PDZ domain of α1-syntrophin: a mechanism for specific substrate recognition. J Biol Chem. 1999;274:12626–31.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ho RC, Alcazar O, Fujii N, Hirshman MF, Goodyear LJ. p38γ MAPK regulation of glucose transporter expression and glucose uptake in Ly myotubes and mouse skeletal muscle. Am J Phys Regul Integr Comp Phys. 2003;286:R342–R9.Google Scholar
  32. Hou S, Lepp A, Chen G. p38 gamma MAP kinase. UCSD-Nature Molecular Pages. 2010a;  https://doi.org/10.1038/mp.a001720.01.CrossRefGoogle Scholar
  33. Hou SW, Zhi H, Pohl N, Loesch M, Qi X, Li R, et al. PTPH1 dephosphorylates and cooperates with p38γ MAPK to increases Ras oncogenesis through PDZ-mediated interaction. Cancer Res. 2010b;70:2901–10.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hou S, Padmanaban S, Qi X, Leep A, Mirza S, Chen G. p38g MAPK signals through phosphorylating its phosphatase PTPH1 in regulating Ras oncogenesis and stress response. J Biol Chem. 2012;287:27895–905.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kennedy NJ, Cellurale C, Davis RJ. A radical role for p38 MAPK in tumor initiation. Cancer Cell. 2007;11:101–3.CrossRefPubMedGoogle Scholar
  36. King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92.CrossRefPubMedGoogle Scholar
  37. Kok M, Holm-Wigerup C, Hauptmann M, Michalides R, Stal O, Linn S, et al. Estrogen receptor-α phosphorylation at serine-118 and tamoxifen response in breast cancer. J Natl Cancer Inst. 2009;101:1725–9.CrossRefPubMedGoogle Scholar
  38. Kolch W, Halasz M, Granovskaya M. N. KB. The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer. 2015;15:515–27.CrossRefPubMedGoogle Scholar
  39. Korb A, Tohidast-Akrad M, Cetin E, Axmann R, Smolen J, Schett G. Differential tissue expression and activation of p38 MAPK α, β, γ, and δ isoforms in rheumatoid arthritis. Arthritis Rheum. 2006;54:2745–56.CrossRefPubMedGoogle Scholar
  40. Kukkonen-Macchi A, Sicora O, Kaczynska K, Oetken-Lindholm C, Pouwels J, Laine L, et al. Loss of p38γ MAPK induces pleitropic mitotic defects and massive cell death. J Cell Sci. 2011;124:216–27.CrossRefPubMedGoogle Scholar
  41. Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003;2:717–26.CrossRefPubMedGoogle Scholar
  42. Kwong J, Hong L, Liao R, Deng Q, Han J, Sun P. p38α and p38γ mediates oncogenic ras-induced senescence through different mechanisms. J Biol Chem. 2009;284:11237–46.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lassar AB. The p38 MAPK family, a pushmi-pullyu of skeletal muscle differentiation. J Cell Biol. 2009;187:941–3.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lechner C, Zahalka MA, Giot J, Moller NP, Ullrich A. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci. 1996;93:4355–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lee ST, Feng M, Wei Y, Li Y, Guan P, Jiang X, et al. Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis. Proc Natl Asso Sci USA. 2013;110:11121–6.CrossRefGoogle Scholar
  46. Li Z, Jiang Y, Ulevitch RJ, Han J. The primary structure of p38γ: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun. 1996;228:334–40.CrossRefPubMedGoogle Scholar
  47. Loesch M, Chen G. The p38 MAPK stress pathway as a tumor suppressor or more? Front Biosci. 2008;13:3581–93.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Loesch M, Zhi H, Hou S, Qi X, Li R, Basir Z, et al. p38γ MAPK cooperates with c-Jun in trans-activating matrix metalloproteinase 9. J Biol Chem. 2010;285:15149–58.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Long DL, Loeser RF. p38g mitogen-activated protein kinase suppresses chondrocyte production of MMP-13 in response to catabolic stimulation. Osteoarthr Cartil. 2010;18:1203–10.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ma S, Yin N, Qi X, Pfister SL, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320–33.PubMedPubMedCentralGoogle Scholar
  51. Marinissen MJ, Chiariello M, Pallante M, Gutkind JS. A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol. 1999;19:4289–301.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Marinissen MJ, Chiariello M, Gutkind JS. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38γ) MAP kinase pathway. Genes Dev. 2001;15:535–53.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Meng F, Zhang H, Liu G, Kreike B, Chen W, Sethi S, et al. p38γ mitogen-activated protein kinase contributes to oncogenic properties maintenance and resistance to poly (ADP-ribose)-polymerase-1 inhibition in breast cancer. Neoplasia. 2011;13:472–82.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mertens S, Craxton M, Goedert M. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett. 1996;383:273–6.CrossRefPubMedGoogle Scholar
  55. Monteriro AC, Sumagin R, Rankin CR, Leoni G, Mina MJ, Reiter DM. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Mol Biol Cell. 2013;24:2849–60.CrossRefGoogle Scholar
  56. Moran N. p38 kinase inhibitor approved for idiopathic pulmonary fibrosis. Nat Biotechnol. 2011;29:301.CrossRefPubMedGoogle Scholar
  57. Noble PW, Albera C, Bradford W, Costabel U, Glassberg MK, Kardatzke D, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377:1760–9.CrossRefPubMedGoogle Scholar
  58. Ono K, Han J. The p38 signal transduction pathway activation and function. Cell Signal. 2000;12:1–13.CrossRefPubMedGoogle Scholar
  59. Otsuka M, Kang YJ, Ren J, Jiang H, Wang Y, Omata M, et al. Distinct effects of p38α deletion in myeloid lineage and gut epithelia in mouse models of inflammatory bowel disease. Gastroenterology. 2010;138:1255–65.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ozes O, Blatt LM, Seiwert SD. Use of pirfenidone in therapeutic regimens. United States Patent-US 7,407,973 B2. 2008;Aug. 5th:1–46.Google Scholar
  61. Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P, et al. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38α in abrogating myoblast proliferation. EMBO J. 2007;26:1245–56.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Peters MF, Adams ME, Froehner SC. Differential association of syntrophin pairs with the dystrophin complex. J Cell Biol. 1997;138:81–93.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Pillaire M, Nebreda AR, Darbon J. Cisplatin and UV radiation induce activation of the stress-activated protein kinase p38γ in human melanoma cells. Biochem Biophys Res Commun. 2000;278:724–8.CrossRefPubMedGoogle Scholar
  64. Pogozelski A, Geng T, Li P, Lira V, Zhang M, Chi JT, et al. p38γ mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One. 2009;4:e7934.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pritchard KI, Messersmith H, Elavathil L, Trudeau M, O’Malley F, DhesyThind B. HER-2 and topoisomerase II as predictors of response to chemotherapy. J Clin Oncol. 2008;26:736–44.CrossRefPubMedGoogle Scholar
  66. Qi X, Tang J, Pramanik R, Schultz RM, Shirasawa S, Sasazuki T, et al. p38 MAPK activation selectively induces cell death in K-ras mutated human colon cancer cells through regulation of vitamin D receptor. J Biol Chem. 2004;279:22138–44.CrossRefPubMedGoogle Scholar
  67. Qi X, Tang J, Loesch M, Pohl N, Alkan S, Chen G. p38γ MAPK integrates signaling cross-talk between Ras and estrogen receptor to increase breast cancer invasion. Cancer Res. 2006;66:7540–7.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Qi X, Pohl NM, Loesch M, Hou S, Li R, Qin JZ, et al. p38α antagonizes p38γ activity through c-Jun-dependent ubiquitin-proteasome pathways in regulating Ras transformation and stress response. J Biol Chem. 2007;282:31398–408.CrossRefPubMedGoogle Scholar
  69. Qi X, Hou S, Lepp A, Li R, Basir Z, Lou Z, et al. Phosphorylation and stabilization of topoisomerase IIα by p38γ MAPK sensitize breast cancer cells to its poisons. J Biol Chem. 2011;286:35883–90.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Qi X, Zhi H, Lepp A, Wang P, Huang J, Basir Z, et al. p38γ mitogen-activated protein kinase (MAPK) confers breast cancer hormone sensitivity by switching estrogen receptor (ER) signaling from classical to nonclassical pathway via stimulating ER phosphorylation and c-Jun transcription. J Biol Chem. 2012;287:14681–91.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Qi XM, Xie C, Hou S, Li G, Yin N, Dong L, et al. Identification of a ternary protein-complex as a therapeutic target for K-Ras-dependent colon cancer. Oncotarget. 2014;5:4269–82.PubMedPubMedCentralGoogle Scholar
  72. Qi XM, Yin N, Ma S, Lepp A, Tang J, Jing W. p38γ MAPK is a therapeutic target for triple-negative breast cancer by stimulation of cancer stem-like cell expansion. Stem Cells. 2015;33:2738–47.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Richeldi L, Yasothan U, Kirkpatrick DS. Pirfenidone. Nat Rev Drug Discov. 2011;10:489–90.CrossRefPubMedGoogle Scholar
  74. Risco A, Fresno C, Mambol A, Alsina-Beauchamp D, MacKenzie KF, Yang HA. p38γ and p38δ kinases regulate the toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation. Proc Natl Acad Sci U S A. 2012;109:11200–5.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rosenthal DT, Lyer H, Escudero S, Bao L, Wu Z, Ventura AC, et al. p38γ promotes breast cancer motility and metastasis through regulation of RhoC GTPase, cytoskeletal architecture, and a novel leading edge behavior. Cancer Res. 2011;71:6338–49.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sabio G, Reuver S, Feijoo C, Hasegawa M, Thomas GM, Centeno F, et al. Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38γ and ERK1/ERK2. Biochem J. 2004;380:19–30.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Sabio G, Simon J, Arthur C, Kuma Y, Peggie M, Carr J, et al. p38γ regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J. 2005;24:1134–45.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sabio G, Cerezo-Guisado MI, Reino P, Inesta-Vaquera FA, Rousseau S, Arthur JSC, et al. p38γ regulates interactin of nuclear PSF and RNA with the tumor-suppressor hDlg in response to osmotic shock. J Cell Sci. 2010;123:2596–604.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sakabe K, Teramoto H, Zohar M, Behbahani B, Miyazaki H, Chikumi H, et al. Potent transforming activity of the small GTP-binding protein Rit in NIH 3T3 cells: evidence for a role of a p38γ-dependent signaling pathway. FEBS Lett. 2002;511:15–20.CrossRefPubMedGoogle Scholar
  80. Schaefer CJ, Ruhrmund DW, Pan L, Selwert SD, Kossen K. Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev. 2011;20:85–97.CrossRefPubMedGoogle Scholar
  81. Schlieker C, Mogk A, Bukau B. A PDZ switch for a cellular stress response. Cell. 2004;117:417–20.CrossRefPubMedGoogle Scholar
  82. Simon C, Simon M, Vucelic G, Hicks MJ, Plinkert PK, Koitchev A, et al. The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP-1-dependent promoter activation. Exp Cell Res. 2001;271:344–55.CrossRefPubMedGoogle Scholar
  83. Skliris GP, Nugent Z, Watson PH, Murphy LC. Estrogen receptor alpha phosphorylated at tyrosine 537 is associated with poor clinical outcome in breast cancer patients treated with tamoxifen. Horm Canc. 2010;1:215–21.CrossRefGoogle Scholar
  84. Smock R, Gierasch LM. Sending signals dynamically. Science. 2009;324:198–203.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sos M, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest. 2009;119:1727–40.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Suresh PS, Ma S, Migliaccio A, Chen G. Protein-tyrosine phosphatase H1 increases breast cancer sensitivity to antiestrogens by dephosphorylating estrogen receptor at tyr537. Mol Cancer Ther. 2014;13:230–8.CrossRefPubMedGoogle Scholar
  87. Tang J, Qi X, Mercola D, Han J, Chen G. Essential role of p38γ in K-Ras transformation independent of phosphorylation. J Biol Chem. 2005;280:23910–7.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Tian Y, Yuan W, Fujita N, Wang J, Wang H, Shapiro IM, et al. Inflammatory cytokines associated with degenerative disc disease control aggrecanase-1 (ADAMTS-4) expression in nucleus pulposus cells through MAPK and NF-κB. Am J Pathol. 2013;182:2310–21.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7:833–46.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Tortorella LL, Lin CB, Pilch PF. ERK6 is expressed in a developmentally regulated manner in rodent skeletal muscle. Biochem Biophys Res Commun. 2003;306:163–8.CrossRefPubMedGoogle Scholar
  91. Visner GA, Liu F, Bizargity P, Liu H, Liu K, Yang J, et al. Pirfenidone inhibits T cell activation, proliferation, cytokine and chemokine production, and host alloresponses. Transplantation. 2009;88:330–8.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wakeman D, Schneider JE, Liu J, Wandu WS, Erwin CR, Guo J, et al. Deletion of p38-alpha mitogen-activated protein kinase within the intestinal epithelium promotes colon tumorigenesis. Surgery. 2012;152:286–93.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C, et al. Involvement of the MKK6-p38γ cascade in γ-radiation-induced cell cycle arrest. Mol Cell Biol. 2000;20:4543–52.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wu CC, Wu X, Han J, Sun P. p38g regulates UV-induced checkpoint signaling and repair of UV-induced DNA damage. Protein Cell. 2010;1:573–83.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Yin N, Qi X, Tsai S, Lu Y, Basir Z, Oshima K. p38γ MAPK is required for inflammation-associated colon tumorigenesis. Oncogene. 2016;35:1039–48.CrossRefPubMedGoogle Scholar
  96. Zhang J, Harrison JS, Studzinski GP. Isoforms of p38MAPK gamma and delta contribute to differentiation of human AML cells induced by 1,25-dihydroxyvitamin D3. Exp Cell Res. 2011;317:117–30.CrossRefPubMedGoogle Scholar
  97. Zur R, Garcia-Ibanez L, Nunez-Buiza A, Aparicio N, Liappas G, Escos A. Combined deletion of p38γ and p38δ reduces skin inflammation and protects from carcinogenesis. Oncotarget. 2015;6:12920–35.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, Zablocki Department of Veterans Affairs Medical CenterMedical College of WisconsinMilwaukeeUSA