Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Carolina Camelo
  • Catarina Peneda
  • Bruno Carmona
  • Helena SoaresEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101508


Historical Background

The cytoskeleton of eukaryotic cells is a dynamic network based on the cross-talk between three types of filaments: microtubules, actin, and intermediate filaments. This network interacts with a high number of associated proteins that regulate and modulate filaments assembly and dynamics. Altogether, they have multiple roles in cells, such as cell size and shape regulation, cell-cell communication, cell migration, cell division, intracellular localization and coordination of organelles functions, and integration of extracellular signals. Moreover, the cytoskeleton also allows the constant flux of molecules, promoting the interaction between proteins, substrates, and cofactors (Fletcher and Mullins 2010; Fischer and Fowler 2015).

The Microtubule Cytoskeleton Dynamics

As one of the cytoskeleton components, microtubules play critical roles in a range of cellular processes. They function as...

This is a preview of subscription content, log in to check access.


  1. Bartolini F, Bhamidipati A, Thomas S, Schwahn U, Lewis SA, Cowan NJ. Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J Biol Chem. 2002;277:14629–34.  https://doi.org/10.1074/jbc.M200128200.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Carranza G, Castano R, Fanarraga ML, Villegas JC, Gonçalves J, Soares H, et al. Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics. Cell Mol Life Sci. 2013;70:357–71.  https://doi.org/10.1007/s00018-012-1114-2.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Downing KH, Nogales E. Tubulin structure: insights into microtubule properties and functions. Curr Opin Struct Biol. 1998;8:785–91.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Fischer RS, Fowler VM. Thematic minireview series: the state of the cytoskeleton in 2015. J Biol Chem. 2015;290:17133–6.  https://doi.org/10.1074/jbc.R115.663716.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92.  https://doi.org/10.1038/nature08908.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Garcia-Mayoral MF, Castano R, Fanarraga ML, Zabala JC, Rico M, Bruix M. The solution structure of the N-terminal domain of human tubulin binding cofactor C reveals a platform for tubulin interaction. PloS one. 2011;6:e25912.  https://doi.org/10.1371/journal.pone.0025912.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gonçalves J, Nolasco S, Nascimento R, Lopez Fanarraga M, Zabala JC, Soares H. TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep. 2010a;11:194–200.  https://doi.org/10.1038/embor.2010.5.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gonçalves J, Tavares A, Carvalhal S, Soares H. Revisiting the tubulin folding pathway: new roles in centrosomes and cilia. Biomol Concepts. 2010b;1:423–34.  https://doi.org/10.1515/bmc.2010.033.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Grayson C, Bartolini F, Chapple JP, Willison KR, Bhamidipati A, Lewis SA, et al. Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum Mol Genet. 2002;11:3065–74.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hage-Sleiman R, Herveau S, Matera EL, Laurier JF, Dumontet C. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells. BMC Cancer. 2010;10:135.  https://doi.org/10.1186/1471-2407-10-135.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hage-Sleiman R, Herveau S, Matera EL, Laurier JF, Dumontet C. Silencing of tubulin binding cofactor C modifies microtubule dynamics and cell cycle distribution and enhances sensitivity to gemcitabine in breast cancer cells. Mol Cancer Ther. 2011;10:303–12.  https://doi.org/10.1158/1535-7163.MCT-10-0568.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kirik V, Mathur J, Grini PE, Klinkhammer I, Adler K, Bechtold N, et al. Functional analysis of the tubulin-folding cofactor C in Arabidopsis thaliana. Curr Biol. 2002;12:1519–23.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Kollman JM, Merdes A, Mourey L, Agard DA. Microtubule nucleation by gamma-tubulin complexes. Nat Rev Mol Cell Biol. 2011;12:709–21.  https://doi.org/10.1038/nrm3209.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Luders J. The amorphous pericentriolar cloud takes shape. Nat Cell Biol. 2012;14:1126–8.  https://doi.org/10.1038/ncb2617.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mori R, Toda T. The dual role of fission yeast Tbc1/cofactor C orchestrates microtubule homeostasis in tubulin folding and acts as a GAP for GTPase Alp41/Arl2. Mol Biol Cell. 2013;24:1713–24. S1-8.  https://doi.org/10.1091/mbc.E12-11-0792.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Nogales E. Structural insight into microtubule function. Annu Rev Biophys Biomol Struct. 2001;30:397–420.  https://doi.org/10.1146/annurev.biophys.30.1.397.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G, et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet. 1998;19:327–32.  https://doi.org/10.1038/1214.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Serna M, Zabala JC. Tubulin folding and degradation. Chichester: eLS Wiley; 2016.  https://doi.org/10.1002/9780470015902.a0026333.CrossRefGoogle Scholar
  19. Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, et al. The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev. 2002;16:959–71.  https://doi.org/10.1101/gad.221702.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Tian G, Huang Y, Rommelaere H, Vandekerckhove J, Ampe C, Cowan NJ. Pathway leading to correctly folded beta-tubulin. Cell. 1996;86:287–96.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Tian G, Bhamidipati A, Cowan NJ, Lewis SA. Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the alpha/beta-tubulin heterodimer. J Biol Chem. 1999;274:24054–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Carolina Camelo
    • 1
  • Catarina Peneda
    • 1
  • Bruno Carmona
    • 1
    • 2
  • Helena Soares
    • 1
    • 2
    Email author
  1. 1.Departamento de Química e Bioquímica, Centro de Química e BioquímicaFaculdade de Ciências, Universidade de LisboaLisboaPortugal
  2. 2.Escola Superior de Tecnologia da Saúde de LisboaLisboaPortugal