Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Alpha-2A Adrenergic Receptor

  • Mary Gannon
  • Qin WangEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101493


Historical Background

The human α2A adrenergic receptor (α2AAR) was first cloned in human platelet cells in 1987 (Kobilka et al. 1987) and was further characterized upon creation of a stable Chinese hamster ovary (CHO) cell line expressing the human α2AAR (Fraser et al. 1989). Cloning of the rat (Chalberg et al. 1990) and pig (Guyer et al. 1990) α2AAR revealed high sequence homology with the human receptor. This conservation across species indicates that the α2AAR plays an important physiological role.

Activation and Signaling

The α2AAR is a G-protein coupled receptor (GPCR) that couples mainly to Gi/o proteins and inhibits voltage dependent Ca2+ channel activation and adynyl cyclase. Additionally, the α2AAR activates inwardly rectifying K+channels and induces phosphorylation of mitogen-activated protein kinase (MAPK) and Akt,...

This is a preview of subscription content, log in to check access.


  1. Chabre O, Conklin BR, Brandon S, Bourne HR, Limbird LE. Coupling of the alpha 2A-adrenergic receptor to multiple G-proteins. A simple approach for estimating receptor-G-protein coupling efficiency in a transient expression system. J Biol Chem. 1994;269:5730–4.PubMedPubMedCentralGoogle Scholar
  2. Chalberg SC, Duda T, Rhine JA, Sharma RK. Molecular cloning, sequencing and expression of an alpha 2-adrenergic receptor complementary DNA from rat brain. Mol Cell Biochem. 1990;97:161–72.PubMedCrossRefGoogle Scholar
  3. Chen Y, Peng Y, Che P, Gannon M, Liu Y, Li L, et al. Alpha(2A) adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction. Proc Natl Acad Sci USA. 2014;111:17296–301.  https://doi.org/10.1073/pnas.1409513111.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cottingham C, Wang Q. Alpha2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev. 2012;36:2214–25.  https://doi.org/10.1016/j.neubiorev.2012.07.011.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cottingham C, Li X, Wang Q. Noradrenergic antidepressant responses to desipramine in vivo are reciprocally regulated by arrestin3 and spinophilin. Neuropharmacology. 2012;62:2354–62.  https://doi.org/10.1016/j.neuropharm.2012.02.011.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fraser CM, Arakawa S, McCombie WR, Venter JC. Cloning, sequence analysis, and permanent expression of a human alpha 2-adrenergic receptor in Chinese hamster ovary cells. Evidence for independent pathways of receptor coupling to adenylate cyclase attenuation and activation. J Biol Chem. 1989;264:11754–61.PubMedPubMedCentralGoogle Scholar
  7. Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q. Noradrenergic dysfunction in Alzheimer’s disease. Front Neurosci. 2015;9:220.  https://doi.org/10.3389/fnins.2015.00220.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gilsbach R, Hein L. Are the pharmacology and physiology of α(2)adrenoceptors determined by α(2)-heteroreceptors and autoreceptors respectively? Br J Pharmacol. 2012;165:90–102.  https://doi.org/10.1111/j.1476-5381.2011.01533.x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guyer CA, Horstman DA, Wilson AL, Clark JD, Cragoe Jr EJ, Limbird LE. Cloning, sequencing, and expression of the gene encoding the porcine alpha 2-adrenergic receptor. Allosteric modulation by Na+, H+, and amiloride analogs. J Biol Chem. 1990;265:17307–17.PubMedPubMedCentralGoogle Scholar
  10. Gyires K, Zádori ZS, Török T, Mátyus P. α2-adrenoceptor subtypes-mediated physiological, pharmacological actions. Neuroche Int. 2009;55:447–53.  https://doi.org/10.1016/j.neuint.2009.05.014PubMedCrossRefGoogle Scholar
  11. Hein L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res. 2006;326:541–51.  https://doi.org/10.1007/s00441-006-0285-2.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hirose H, Maruyama H, Ito K, Koyama K, Kido K, Saruta T. Glucose-induced insulin secretion and alpha 2-adrenergic receptor subtypes. J Lab Clin Med. 1993;121:32–7.PubMedPubMedCentralGoogle Scholar
  13. Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, et al. Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science. 1987;238:650–6.PubMedCrossRefGoogle Scholar
  14. Lu R, Chen Y, Cottingham C, Peng N, Jiao K, Limbird LE, et al. Enhanced hypotensive, bradycardic, and hypnotic responses to alpha2-adrenergic agonists in spinophilin-null mice are accompanied by increased G protein coupling to the alpha2A-adrenergic receptor. Mol Pharmacol. 2010;78:279–86.  https://doi.org/10.1124/mol.110.065300.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Masse F, Hascoet M, Dailly E, Bourin M. Effect of noradrenergic system on the anxiolytic-like effect of DOI (5-HT2A/2C agonists) in the four-plate test. Psychopharmacology. 2006;183:471–81.  https://doi.org/10.1007/s00213-005-0220-3.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Rosengren AH, Jokubka R, Tojjar D, Granhall C, Hansson O, Li DQ, et al. Overexpression of alpha2A–adrenergic receptors contributes to type 2 diabetes. Science. 2010;327:217–20.  https://doi.org/10.1126/science.1176827.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Wang Q, Limbird LE. Regulated interactions of the alpha 2A adrenergic receptor with spinophilin, 14-3-3zeta, and arrestin 3. J Biol Chem. 2002;277:50589–96.  https://doi.org/10.1074/jbc.M208503200.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Wang Q, Limbird LE. Regulation of alpha2AR trafficking and signaling by interacting proteins. Biochem Pharmacol. 2007;73:1135–45.  https://doi.org/10.1016/j.bcp.2006.12.024.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Wang Q, Zhao J, Brady AE, Feng J, Allen PB, Lefkowitz RJ, et al. Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors. Science. 2004;304:1940–4.  https://doi.org/10.1126/science.1098274.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell. 2007;129:397–410.  https://doi.org/10.1016/j.cell.2007.03.015.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Cell, Developmental and Integrative BiologyUniversity of AlabamaBirminghamUSA
  2. 2.University of CincinnatiCincinnatiUSA