Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101489


Historical Background

In eukaryotic cells, protein transport between membrane compartments is dependent on membrane carriers, mainly vesicles. The molecular mechanisms of vesicular transport have been studied extensively. A series of protein machineries have been identified to mediate each step of vesicular transport, including vesicle formation, translocation, and docking and fusion with target membrane. Specifically, the machineries for vesicle formation have been defined as coat complexes, which are usually regulated by small GTPases Sar1/ADP ribosylation factor (ARF) (Donaldson and Jackson 2011). Like all other small GTPases, the functions of Sar1/ARFs depend on associated nucleotides. When a Sar1/ARF is GTP-bound, it is in active state to recruit effectors such as coat proteins for downstream events, including vesicular transport. However, its intrinsic GTPase activity enhanced by a negative...

This is a preview of subscription content, log in to check access.


  1. Bai M, Pang X, Lou J, Zhou Q, Zhang K, Ma J, et al. Mechanistic insights into regulated cargo binding by ACAP1 protein. J Biol Chem. 2012;287:28675–85.  https://doi.org/10.1074/jbc.M112.378810.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Davidson AC, Humphreys D, Brooks AB, Hume PJ, Koronakis V. The Arf GTPase-activating protein family is exploited by Salmonella enterica serovar Typhimurium to invade nonphagocytic host cells. mBio. 2015;6.  https://doi.org/10.1128/mBio.02253-14.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12:362–75.  https://doi.org/10.1038/nrm3117.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Frost A, Unger VM, De Camilli P. The BAR domain superfamily: membrane-molding macromolecules. Cell. 2009;137:191–6.  https://doi.org/10.1016/j.cell.2009.04.010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hsu VW, Bai M, Li J. Getting active: protein sorting in endocytic recycling. Nat Rev Mol Cell Biol. 2012;13:323–8.  https://doi.org/10.1038/nrm3332.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Jackson TR, Brown FD, Nie Z, Miura K, Foroni L, Sun J, et al. ACAPs are arf6 GTPase-activating proteins that function in the cell periphery. J Cell Biol. 2000;151:627–38.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Li J, Hsu VW. An ACAP1 coat complex acting in endocytic recycling. Methods Cell Biol. 2015;130:81–99.  https://doi.org/10.1016/bs.mcb.2015.03.019.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Li J, Peters PJ, Bai M, Dai J, Bos E, Kirchhausen T, et al. An ACAP1-containing clathrin coat complex for endocytic recycling. J Cell Biol. 2007;178:453–64.  https://doi.org/10.1083/jcb.200608033.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ma Z, Nie Z, Luo R, Casanova JE, Ravichandran KS. Regulation of Arf6 and ACAP1 signaling by the PTB-domain-containing adaptor protein GULP. Curr Biol. 2007;17:722–7.  https://doi.org/10.1016/j.cub.2007.03.014.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Mim C, Cui H, Gawronski-Salerno JA, Frost A, Lyman E, Voth GA, et al. Structural basis of membrane bending by the N-BAR protein endophilin. Cell. 2012;149:137–45.  https://doi.org/10.1016/j.cell.2012.01.048.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Pang X, Fan J, Zhang Y, Zhang K, Gao B, Ma J, et al. A PH domain in ACAP1 possesses key features of the BAR domain in promoting membrane curvature. Dev Cell. 2014;31:73–86.  https://doi.org/10.1016/j.devcel.2014.08.020.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Pylypenko O, Lundmark R, Rasmuson E, Carlsson SR, Rak A. The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J. 2007;26:4788–800.  https://doi.org/10.1038/sj.emboj.7601889.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Qualmann B, Koch D, Kessels MM. Let’s go bananas: revisiting the endocytic BAR code. EMBO J. 2011;30:3501–15.  https://doi.org/10.1038/emboj.2011.266.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Rueckert C, Haucke V. The oncogenic TBC domain protein USP6/TRE17 regulates cell migration and cytokinesis. Biol Cell. 2012;104:22–33.  https://doi.org/10.1111/boc.201100108.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Shi A, Liu O, Koenig S, Banerjee R, Chen CC, Eimer S, et al. RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci USA. 2012;109:E2306–15.  https://doi.org/10.1073/pnas.1205278109.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Sun Y, Rong X, Lu W, Peng Y, Li J, Xu S, et al. Translational study of Alzheimer’s disease (AD) biomarkers from brain tissues in AbetaPP/PS1 mice and serum of AD patients. J Alzheimers Dis. 2015;45:269–82.  https://doi.org/10.3233/JAD-142805.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Yamamoto-Furusho JK, Barnich N, Xavier R, Hisamatsu T, Podolsky DK. Centaurin beta1 down-regulates nucleotide-binding oligomerization domains 1- and 2-dependent NF-kappaB activation. J Biol Chem. 2006;281:36060–70.  https://doi.org/10.1074/jbc.M602383200.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Yamamoto-Furusho JK, Furuzawa-Carballeda J, Fonseca-Camarillo G. Gene and protein expression of centaurin beta 1 (CENTB1) are up-regulated in patients with ulcerative colitis. J Crohns Colitis. 2013;7:e238–9.  https://doi.org/10.1016/j.crohns.2012.12.004.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Rheumatology, Immunology and AllergyDepartment of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA