Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Acetylcholinesterase

  • Benjamín Pérez-Aguilar
  • Cecilio J. Vidal
  • José Luis Gomez-Olivares
  • Monserrat Gerardo-Ramirez
  • Ma. Concepción Gutiérrez-Ruiz
  • Luis E. Gomez-Quiroz
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101486

Synonyms

Historical background

Since its discovery in 1914, acetylcholinesterase (AChE) has attracted attention of many research groups, making AChE one of the most studied proteins. The great physiological relevance of AChE has prompted exhaustive research to know its substrate preference, catalytic mechanism, sensitivity to inhibitors, active site topology, entrance and exiting of substrates, inhibitors and products, and other aspects of AChE-related catalysis (Dale 1914; Brown et al. 1936; Augustinsson and Nachmansohn 1949; Katz 1966; Nachmansohn and Neumann 1975; Rosenberry 1979; Schwarz et al. 1995). The studies regarding kinetic properties of AChE were followed by others to throw light into chromosome mapping, gene expression, mRNA splicing and translation of AChE proteins, polymerization and transport to cell stores, and localization of AChE molecules in tissues and cells (Sussman et al. 1991; Massoulie et al. 1993; Legay 2000; Soreq and Seidman 2001...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The work was supported by grants of the CONACYT 252942, 2015-02-1320, SEP-PRODEP-913026-1461211, and Universidad Autónoma Metropolitana Iztapalapa.

References

  1. Alvarez A, Opazo C, Alarcon R, Garrido J, Inestrosa NC. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol. 1997;272:348–61.  https://doi.org/10.1006/jmbi.1997.1245.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson AA, Ushakov DS, Ferenczi MA, Mori R, Martin P, Saffell JL. Morphoregulation by acetylcholinesterase in fibroblasts and astrocytes. J Cell Physiol. 2008;215:82–100.  https://doi.org/10.1002/jcp.21288.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ariel N, Ordentlich A, Barak D, Bino T, Velan B, Shafferman A. The “aromatic patch” of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Biochem J. 1998;335(Pt 1):95–102.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Augustinsson KB, Nachmansohn D. Distinction between acetylcholine-esterase and other choline ester-splitting enzymes. Science. 1949;110:98–9.  https://doi.org/10.1126/science.110.2847.98.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baker DJ. Critical care requirements after mass toxic agent release. Crit Care Med. 2005;33:S66–74.PubMedCrossRefGoogle Scholar
  6. Bartolini M, Bertucci C, Cavrini V, Andrisano V. Beta-amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol. 2003;65:407–16.PubMedCrossRefGoogle Scholar
  7. Bernardi CC, Ribeiro Ede S, Cavalli IJ, Chautard-Freire-Maia EA, Souza RL. Amplification and deletion of the ACHE and BCHE cholinesterase genes in sporadic breast cancer. Cancer Genet Cytogenet. 2010;197:158–65.  https://doi.org/10.1016/j.cancergencyto.2009.10.011.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bigalke H, Rummel A. Medical aspects of toxin weapons. Toxicology. 2005;214:210–20.  https://doi.org/10.1016/j.tox.2005.06.015.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bigbee JW, Sharma KV. The adhesive role of acetylcholinesterase (AChE): detection of AChE binding proteins in developing rat spinal cord. Neurochem Res. 2004;29:2043–50.PubMedCrossRefGoogle Scholar
  10. Brown GL, Dale HH, Feldberg W. Reactions of the normal mammalian muscle to acetylcholine and to eserine. J Physiol. 1936;87:394–424.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cassiman D, Libbrecht L, Sinelli N, Desmet V, Denef C, Roskams T. The vagal nerve stimulates activation of the hepatic progenitor cell compartment via muscarinic acetylcholine receptor type 3. Am J Pathol. 2002;161:521–30.  https://doi.org/10.1016/S0002-9440(10)64208-3.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castillo-Gonzalez AC, Nieto-Ceron S, Pelegrin-Hernandez JP, Montenegro MF, Noguera JA, Lopez-Moreno MF, et al. Dysregulated cholinergic network as a novel biomarker of poor prognostic in patients with head and neck squamous cell carcinoma. BMC Cancer. 2015a;15:385.  https://doi.org/10.1186/s12885-015-1402-y.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Castillo-Gonzalez AC, Pelegrin-Hernandez JP, Nieto-Ceron S, Madrona AP, Noguera JA, Lopez-Moreno MF, et al. Unbalanced acetylcholinesterase activity in larynx squamous cell carcinoma. Int Immunopharmacol. 2015b;29:81–6.  https://doi.org/10.1016/j.intimp.2015.05.011.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cohen-Cory S. The developing synapse: construction and modulation of synaptic structures and circuits. Science. 2002;298:770–6.  https://doi.org/10.1126/science.1075510.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Coussen F, Ayon A, Le Goff A, Leroy J, Massoulie J, Bon S. Addition of a glycophosphatidylinositol to acetylcholinesterase. Processing, degradation, and secretion. J Biol Chem. 2001;276:27881–92.  https://doi.org/10.1074/jbc.M010817200.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen Y, Sun J, Peng S, Liao H, Zhang Y, Lehmann J. Tacrine-flurbiprofen hybrids as multifunctional drug candidates for the treatment of Alzheimer’s disease. Arch Pharm. 2013;346:865–71.  https://doi.org/10.1002/ardp.201300074.CrossRefGoogle Scholar
  17. Dale HH. The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther. 1914;6:147–90.Google Scholar
  18. De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry. 2001;40:10447–57.PubMedCrossRefGoogle Scholar
  19. de Martinez-Lopez CA, Nieto-Ceron S, Aurelio PC, Galbis-Martinez L, Latour-Perez J, Torres-Lanzas J, et al. Cancer-associated differences in acetylcholinesterase activity in bronchial aspirates from patients with lung cancer. Clin Sci. 2008;115:245–53.  https://doi.org/10.1042/CS20070393.CrossRefGoogle Scholar
  20. Drews U. Cholinesterase in embryonic development. Prog Histochem Cytochem. 1975;7:1–52.PubMedCrossRefGoogle Scholar
  21. Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact. 2010;187:10–22.  https://doi.org/10.1016/j.cbi.2010.01.042.CrossRefPubMedPubMedCentralGoogle Scholar
  22. El-Malah A, Gedawy EM, Kassab AE, Salam RM. Novel tacrine analogs as potential cholinesterase inhibitors in Alzheimer’s disease. Arch Pharm. 2014;347:96–103.  https://doi.org/10.1002/ardp.201300121.CrossRefGoogle Scholar
  23. Engel AG. The therapy of congenital myasthenic syndromes. Neurotherapeutics. 2007;4:252–7.  https://doi.org/10.1016/j.nurt.2007.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fischer K, Brown J, Scherer SW, Schramm P, Stewart J, Fugazza G, et al. Delineation of genomic regions in chromosome band 7q22 commonly deleted in myeloid leukemias. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 1998;144:46–52.PubMedPubMedCentralGoogle Scholar
  25. Fluck RA, Wynshaw-Boris AJ, Schneider LM. Cholinergic molecules modify the in vitro behavior of cells from early embryos of the medaka Oryzias latipes, a teleost fish. Comp Biochem Physiol C. 1980;67C:29–34.PubMedCrossRefGoogle Scholar
  26. Genever PG, Birch MA, Brown E, Skerry TM. Osteoblast-derived acetylcholinesterase: a novel mediator of cell-matrix interactions in bone? Bone. 1999;24:297–303.PubMedCrossRefGoogle Scholar
  27. Getman DK, Eubanks JH, Camp S, Evans GA, Taylor P. The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7. Am J Hum Genet. 1992;51:170–7.PubMedPubMedCentralGoogle Scholar
  28. Gomez JL, Nieto-Ceron S, Campoy FJ, Munoz-Delgado E, Vidal CJ. Purification and properties of hydrophilic dimers of acetylcholinesterase from mouse erythrocytes. Int J Biochem Cell Biol. 2003;35:1109–18.PubMedCrossRefGoogle Scholar
  29. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. The architecture of active zone material at the frog’s neuromuscular junction. Nature. 2001;409:479–84.  https://doi.org/10.1038/35054000.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron. 1996;16:881–91.PubMedCrossRefGoogle Scholar
  31. Jiang H, Zhang XJ. Acetylcholinesterase and apoptosis. A novel perspective for an old enzyme. FEBS J. 2008;275:612–7.  https://doi.org/10.1111/j.1742-4658.2007.06236.x.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jin QH, He HY, Shi YF, Lu H, Zhang XJ. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells. Acta Pharmacol Sin. 2004;25:1013–21.PubMedPubMedCentralGoogle Scholar
  33. Johnson G, Moore SW. The adhesion function on acetylcholinesterase is located at the peripheral anionic site. Biochem Biophys Res Commun. 1999;258:758–62.  https://doi.org/10.1006/bbrc.1999.0705.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Karmouch J, Dobbertin A, Sigoillot S, Legay C. Developmental consequences of the ColQ/MuSK interactions. Chem Biol Interact. 2013;203(1):287–291.  https://doi.org/10.1016/j.cbi.2012.10.006.PubMedCrossRefGoogle Scholar
  35. Katz B. Nerve, muscle, and synapse. New York: McGraw-Hill; 1966.Google Scholar
  36. Kaufer D, Friedman A, Seidman S, Soreq H. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature. 1998;393:373–7.  https://doi.org/10.1038/30741.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Layer PG, Klaczinski J, Salfelder A, Sperling LE, Thangaraj G, Tuschl C, et al. Cholinesterases in development: AChE as a firewall to inhibit cell proliferation and support differentiation. Chem Biol Interact. 2013;203:269–76.  https://doi.org/10.1016/j.cbi.2012.09.014.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Le Douarin NM. Investigations on the neural crest. Methodological aspects and recent advances. Ann N Y Acad Sci. 1986;486:66–86.PubMedCrossRefGoogle Scholar
  39. Legay C. Why so many forms of acetylcholinesterase? Microsc Res Tech. 2000;49:56–72.  https://doi.org/10.1002/(SICI)1097-0029(20000401)49:1<56::AID-JEMT7>3.0.CO;2-R.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lev-Lehman E, Deutsch V, Eldor A, Soreq H. Immature human megakaryocytes produce nuclear-associated acetylcholinesterase. Blood. 1997;89:3644–53.PubMedPubMedCentralGoogle Scholar
  41. Liang D, Blouet JP, Borrega F, Bon S, Massoulie J. Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase. FEBS J. 2009;276:94–108.  https://doi.org/10.1111/j.1742-4658.2008.06756.x.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lu L, Zhang X, Zhang B, Wu J, Zhang X. Synaptic acetylcholinesterase targeted by microRNA-212 functions as a tumor suppressor in non-small cell lung cancer. Int J Biochem Cell Biol. 2013;45:2530–40.  https://doi.org/10.1016/j.biocel.2013.08.007.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Massoulie J. The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals. 2002;11:130–43. doi:65054PubMedCrossRefGoogle Scholar
  44. Massoulie J, Perrier N, Noureddine H, Liang D, Bon S. Old and new questions about cholinesterases. Chem Biol Interact. 2008;175:30–44.  https://doi.org/10.1016/j.cbi.2008.04.039.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993;41:31–91.PubMedCrossRefGoogle Scholar
  46. Meshorer E, Erb C, Gazit R, Pavlovsky L, Kaufer D, Friedman A, et al. Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science. 2002;295:508–12.  https://doi.org/10.1126/science.1066752.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Meshorer E, Soreq H. Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci. 2006;29:216–24.  https://doi.org/10.1016/j.tins.2006.02.005.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Meshorer E, Toiber D, Zurel D, Sahly I, Dori A, Cagnano E, et al. Combinatorial complexity of 5′ alternative acetylcholinesterase transcripts and protein products. J Biol Chem. 2004;279:29740–51.  https://doi.org/10.1074/jbc.M402752200.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Montenegro MF, Nieto-Ceron S, Cabezas-Herrera J, Munoz-Delgado E, Campoy FJ, Vidal CJ. Most acetylcholinesterase activity of non-nervous tissues and cells arises from the AChE-H transcript. J Mol Neurosci. 2014;53:429–35.  https://doi.org/10.1007/s12031-013-0172-8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Montenegro MF, Ruiz-Espejo F, Campoy FJ, Munoz-Delgado E, de la Cadena MP, Rodriguez-Berrocal FJ, et al. Cholinesterases are down-expressed in human colorectal carcinoma. Cell Mol Life Sci. 2006;63:2175–82.  https://doi.org/10.1007/s00018-006-6231-3.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Moral-Naranjo MT, Cabezas-Herrera J, Vidal CJ, Campoy FJ. Muscular dystrophy with laminin deficiency decreases the content of butyrylcholinesterase tetramers in sciatic nerves of Lama2dy mice. Neurosci Lett. 2002;331:155–8.PubMedCrossRefGoogle Scholar
  52. Moral-Naranjo MT, Montenegro MF, Munoz-Delgado E, Campoy FJ, Vidal CJ. The levels of both lipid rafts and raft-located acetylcholinesterase dimers increase in muscle of mice with muscular dystrophy by merosin deficiency. Biochim Biophys Acta. 2010;1802:754–64.  https://doi.org/10.1016/j.bbadis.2010.05.011.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Munoz-Delgado E, Montenegro MF, Campoy FJ, Moral-Naranjo MT, Cabezas-Herrera J, Kovacs G, et al. Expression of cholinesterases in human kidney and its variation in renal cell carcinoma types. FEBS J. 2010;277:4519–29.  https://doi.org/10.1111/j.1742-4658.2010.07861.x.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Munoz-Ruiz P, Rubio L, Garcia-Palomero E, Dorronsoro I, del Monte-Millan M, Valenzuela R, et al. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J Med Chem. 2005;48:7223–33.  https://doi.org/10.1021/jm0503289.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nachmansohn D, Neumann E. Chemical and molecular basis of nerve activity. New York: Academic Press; 1975.Google Scholar
  56. Nachmansohn D, Wilson IB. The enzymic hydrolysis and synthesis of acetylcholine. Adv Enzymol Relat Subj Biochem. 1951;12:259–339.PubMedPubMedCentralGoogle Scholar
  57. Neville PJ, Thomas N, Campbell IG. Loss of heterozygosity at 7q22 and mutation analysis of the CDP gene in human epithelial ovarian tumors. Int J Cancer. 2001;91:345–9.PubMedCrossRefGoogle Scholar
  58. Nieto-Ceron S, del Campo LF, Munoz-Delgado E, Vidal CJ, Campoy FJ. Muscular dystrophy by merosin deficiency decreases acetylcholinesterase activity in thymus of Lama2dy mice. J Neurochem. 2005;95:1035–46.  https://doi.org/10.1111/j.1471-4159.2005.03433.x.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ohta K, Takahashi C, Tosuji H. Inhibition of spicule elongation in sea urchin embryos by the acetylcholinesterase inhibitor eserine. Comp Biochem Physiol B Biochem Mol Biol. 2009;153:310–6.  https://doi.org/10.1016/j.cbpb.2009.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ordentlich A, Barak D, Kronman C, Ariel N, Segall Y, Velan B, et al. Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase. J Biol Chem. 1995;270:2082–91.PubMedCrossRefGoogle Scholar
  61. Ordentlich A, Barak D, Kronman C, Flashner Y, Leitner M, Segall Y, et al. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem. 1993;268:17083–95.PubMedPubMedCentralGoogle Scholar
  62. Park SE, Jeong SH, Yee SB, Kim TH, Soung YH, Ha NC, et al. Interactions of acetylcholinesterase with caveolin-1 and subsequently with cytochrome c are required for apoptosome formation. Carcinogenesis. 2008;29:729–37.  https://doi.org/10.1093/carcin/bgn036.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Park SE, Kim ND, Yoo YH. Acetylcholinesterase plays a pivotal role in apoptosome formation. Cancer Res. 2004;64:2652–5.PubMedCrossRefGoogle Scholar
  64. Perez-Aguilar B, Vidal CJ, Palomec G, Garcia-Dolores F, Gutierrez-Ruiz MC, Bucio L, et al. Acetylcholinesterase is associated with a decrease in cell proliferation of hepatocellular carcinoma cells. Biochim Biophys Acta. 2015;1852:1380–7.  https://doi.org/10.1016/j.bbadis.2015.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Perrier AL, Massoulie J, Krejci E. PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron. 2002;33:275–85.PubMedCrossRefGoogle Scholar
  66. Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed Pap Med Fac Univ Palacky Olomouc Czech. 2011;155:219–29.  https://doi.org/10.5507/bp.2011.036.CrossRefGoogle Scholar
  67. Quinn DM. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem Rev. 1987;87:955–79.  https://doi.org/10.1021/cr00081a005.CrossRefGoogle Scholar
  68. Radic Z, Gibney G, Kawamoto S, MacPhee-Quigley K, Bongiorno C, Taylor P. Expression of recombinant acetylcholinesterase in a baculovirus system: kinetic properties of glutamate 199 mutants. Biochemistry. 1992;31:9760–7.PubMedCrossRefGoogle Scholar
  69. Rosenberry TL. Quantitative simulation of endplate currents at neuromuscular junctions based on the reaction of acetylcholine with acetylcholine receptor and acetylcholinesterase. Biophys J. 1979;26:263–89.  https://doi.org/10.1016/S0006-3495(79)85249-2.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ruiz-Espejo F, Cabezas-Herrera J, Illana J, Campoy FJ, Vidal CJ. Cholinesterase activity and acetylcholinesterase glycosylation are altered in human breast cancer. Breast Cancer Res Treat. 2002;72:11–22.PubMedCrossRefGoogle Scholar
  71. Sanes JR, Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci. 2001;2:791–805.  https://doi.org/10.1038/35097557.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schwarz M, Glick D, Loewenstein Y, Soreq H. Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. Pharmacol Ther. 1995;67:283–322.PubMedCrossRefGoogle Scholar
  73. Seidman S, Sternfeld M, Ben Aziz-Aloya R, Timberg R, Kaufer-Nachum D, Soreq H. Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3′-terminal exons. Mol Cell Biol. 1995;15:2993–3002.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Serobyan N, Jagannathan S, Orlovskaya I, Schraufstatter I, Skok M, Loring J, et al. The cholinergic system is involved in regulation of the development of the hematopoietic system. Life Sci. 2007;80:2352–60.  https://doi.org/10.1016/j.lfs.2007.04.017.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sieburth D, Ch’ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, et al. Systematic analysis of genes required for synapse structure and function. Nature. 2005;436:510–7.  https://doi.org/10.1038/nature03809.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem. 2013;70:165–88.  https://doi.org/10.1016/j.ejmech.2013.09.050.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Song P, Sekhon HS, Jia Y, Keller JA, Blusztajn JK, Mark GP, et al. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res. 2003;63:214–21.PubMedPubMedCentralGoogle Scholar
  78. Soreq H, Seidman S. Acetylcholinesterase–new roles for an old actor. Nat Rev Neurosci. 2001;2:294–302.  https://doi.org/10.1038/35067589.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991;253:872–9.PubMedCrossRefGoogle Scholar
  80. Sussman JL, Harel M, Silman I. Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs. Chem Biol Interact. 1993;87:187–97.PubMedCrossRefGoogle Scholar
  81. Taylor P. The cholinesterases. J Biol Chem. 1991;266:4025–8.PubMedPubMedCentralGoogle Scholar
  82. Taylor P, Lappi S. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry. 1975;14:1989–97.PubMedCrossRefGoogle Scholar
  83. Taylor P, Radic Z. The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol. 1994;34:281–320.  https://doi.org/10.1146/annurev.pa.34.040194.001433.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Thunnissen FB. Acetylcholine receptor pathway and lung cancer. J Thorac Oncol. 2009;4:943–6.  https://doi.org/10.1097/JTO.0b013e3181ad83fc.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Toiber D, Berson A, Greenberg D, Melamed-Book N, Diamant S, Soreq H. N-acetylcholinesterase-induced apoptosis in Alzheimer’s disease. PLoS One. 2008;3:e3108.  https://doi.org/10.1371/journal.pone.0003108.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Toiber D, Greenberg DS, Soreq H. Pro-apoptotic protein-protein interactions of the extended N-AChE terminus. J Neural Transm. 2009;116:1435–42.  https://doi.org/10.1007/s00702-009-0249-2.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Vidal CJ. Expression of cholinesterases in brain and non-brain tumours. Chem Biol Interact. 2005;157–158:227–32.  https://doi.org/10.1016/j.cbi.2005.10.035.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Vidal CJ, Montenegro MF, Munoz-Delgado E, Campoy FJ, Cabezas-Herrera J, Moral-Naranjo MT. The AChE membrane-binding tail PRiMA is down-regulated in muscle and nerve of mice with muscular dystrophy by merosin deficiency. Chem Biol Interact. 2013;203:330–4.  https://doi.org/10.1016/j.cbi.2012.08.001.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wang Y, Wang T, Shi X, Wan D, Zhang P, He X, et al. Analysis of acetylcholine, choline and butyrobetaine in human liver tissues by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2008;47:870–5.  https://doi.org/10.1016/j.jpba.2008.02.022.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Xiang AC, Xie J, Zhang XJ. Acetylcholinesterase in intestinal cell differentiation involves G2/M cell cycle arrest. Cell Mol Life Sci. 2008;65:1768–79.  https://doi.org/10.1007/s00018-008-8016-3.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Xu H, Shen Z, Xiao J, Yang Y, Huang W, Zhou Z, et al. Acetylcholinesterase overexpression mediated by oncolytic adenovirus exhibited potent anti-tumor effect. BMC Cancer. 2014;14:668.  https://doi.org/10.1186/1471-2407-14-668.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yang L, He HY, Zhang XJ. Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells. Neurosci Res. 2002;42:261–8.PubMedCrossRefGoogle Scholar
  93. Yang WN, Han H, Hu XD, Feng GF, Qian YH. The effects of perindopril on cognitive impairment induced by d-galactose and aluminum trichloride via inhibition of acetylcholinesterase activity and oxidative stress. Pharmacol Biochem Behav. 2013;114–115:31–6.  https://doi.org/10.1016/j.pbb.2013.10.027.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, et al. Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ. 2002;9:790–800.  https://doi.org/10.1038/sj.cdd.4401034.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhao Y, Wang X, Wang T, Hu X, Hui X, Yan M, et al. Acetylcholinesterase, a key prognostic predictor for hepatocellular carcinoma, suppresses cell growth and induces chemosensitization. Hepatology. 2011;53:493–503.  https://doi.org/10.1002/hep.24079.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Benjamín Pérez-Aguilar
    • 1
  • Cecilio J. Vidal
    • 2
  • José Luis Gomez-Olivares
    • 1
  • Monserrat Gerardo-Ramirez
    • 1
  • Ma. Concepción Gutiérrez-Ruiz
    • 1
  • Luis E. Gomez-Quiroz
    • 1
  1. 1.Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana-IztapalapaMéxico DFMéxico
  2. 2.Departamento de Bioquímica y Biología Molecular-AUniversidad de Murcia, IMIB-Arrixaca, Regional Campus of International Excellence “Campus Mare Nostrum”MurciaSpain