HIV Infection as a Model of Accelerated Immunosenescence

  • Victor Appay
  • Delphine Sauce
  • Anthony D. Kelleher
Living reference work entry

Abstract

Since its discovery in 1983, HIV-1 has become the most extensively studied pathogen in history. Massive CD4+ T-cell depletion and sustained immune activation and inflammation are hallmarks of HIV-1 infection. However, many insights underlying the onset of immunodeficiency that develops during HIV-1 infection remain to be resolved. In recent years, an intriguing parallel between HIV-1 infection and aging has emerged: many of the alterations that affect innate and adaptive immune cell compartments in HIV-infected patients are reminiscent of the process of immune aging, characteristic of old age. These alterations, of which the alleged cause is the systemic chronic immune activation established in patients, likely participate to the decline of immune competence with HIV disease progression. Of note, the comparison between HIV-1-infected patients and uninfected elderly adults goes beyond the sole onset of immunosenescence and extends to the deterioration of a number of physiological functions related to inflammation and systemic aging. Our understanding of the precise link between immune activation and aging in HIV-1 infection is complicated by the influence of coinfections and lifestyle factors. Developing rational interventions to reduce the hyper-inflammatory status and age resembling manifestations in HIV-1-infected patients are major goals of the HIV community.

Keywords

HIV pathogenesis CD4+ T cells Immune activation Regenerative capacity Exhaustion 

References

  1. Alter G et al (2005) Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106:3366–3369PubMedCrossRefGoogle Scholar
  2. Alter G et al (2009) HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J Virol 83:6798–6805PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amorosa V, Tebas P (2006) Bone disease and HIV infection. Clin Infect Dis 42:108–114PubMedCrossRefGoogle Scholar
  4. Ancuta P et al (2008) Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 3:e2516PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andrew D, Aspinall R (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 37:455–463PubMedCrossRefGoogle Scholar
  6. Angin M et al (2016) Preservation of lymphopoietic potential and virus suppressive capacity by CD8+ T cells in HIV-2-infected controllers. J Immunol 197(7):2787–2795PubMedCrossRefGoogle Scholar
  7. Anzala AO et al (2000) Acute sexually transmitted infections increase human immunodeficiency virus type 1 plasma viremia, increase plasma type 2 cytokines, and decrease CD4 cell counts. J Infect Dis 182:459–466PubMedCrossRefGoogle Scholar
  8. Appay V, van Lier RA, Sallusto F, Roederer M (2008) Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73:975–983PubMedCrossRefGoogle Scholar
  9. Appay V et al (2011) Old age and anti-cytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients. AIDS 25:1813–1822PubMedCrossRefGoogle Scholar
  10. Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256PubMedCrossRefGoogle Scholar
  11. Azzoni L et al (2002) Sustained impairment of IFN-gamma secretion in suppressed HIV-infected patients despite mature NK cell recovery: evidence for a defective reconstitution of innate immunity. J Immunol 168:5764–5770PubMedCrossRefGoogle Scholar
  12. Bastard JP et al (2015) Increased systemic immune activation and inflammatory profile of long-term HIV-infected ART-controlled patients is related to personal factors, but not to markers of HIV infection severity. J Antimicrob Chemother 70:1816–1824PubMedGoogle Scholar
  13. Bayard C et al (2016) Coordinated expansion of both memory T cells and NK cells in response to CMV infection in humans. Eur J Immunol 46:1168–1179PubMedCrossRefGoogle Scholar
  14. Best C et al (2015) Sitagliptin reduces inflammation and chronic immune cell activation in HIV+ adults with impaired glucose tolerance. J Clin Endocrinol Metab 100:2621–2629PubMedPubMedCentralCrossRefGoogle Scholar
  15. Betts MR et al (2001) Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection. J Virol 75:11983–11991PubMedPubMedCentralCrossRefGoogle Scholar
  16. Beziat V et al (2013) NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121:2678–2688PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bozzano F et al (2011) NK-cell phenotype at interruption underlies widely divergent duration of CD4+-guided antiretroviral treatment interruption. Int Immunol 23:109–118PubMedCrossRefGoogle Scholar
  18. Brenchley JM et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:2711–2720PubMedCrossRefGoogle Scholar
  19. Brenchley JM et al (2006a) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371PubMedCrossRefGoogle Scholar
  20. Brenchley JM, Price DA, Douek DC (2006b) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7:235–239PubMedCrossRefGoogle Scholar
  21. Briceno O et al (2016) Reduced naive CD8(+) T-cell priming efficacy in elderly adults. Aging Cell 15:14–21PubMedCrossRefGoogle Scholar
  22. Brunetta E, Hudspeth KL, Mavilio D (2010) Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes. J Leukoc Biol 88:1119–1130PubMedCrossRefGoogle Scholar
  23. Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M, Pedersen BK (2000) Aging, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol 121:255–260PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8:131–136PubMedCrossRefGoogle Scholar
  25. Byakwaga H et al (2011) Intensification of antiretroviral therapy with raltegravir or addition of hyperimmune bovine colostrum in HIV-infected patients with suboptimal CD4+ T-cell response: a randomized controlled trial. J Infect Dis 204:1532–1540PubMedCrossRefGoogle Scholar
  26. Campillo-Gimenez L et al (2014) Neutrophils in antiretroviral therapy-controlled HIV demonstrate hyperactivation associated with a specific IL-17/IL-22 environment. J Allergy Clin Immunol 134(5):1142–1152PubMedCrossRefGoogle Scholar
  27. Clark DR et al (2000) T-cell progenitor function during progressive human immunodeficiency virus-1 infection and after antiretroviral therapy. Blood 96:242–249PubMedGoogle Scholar
  28. Cohen HJ, Pieper CF, Harris T, Rao KM, Currie MS (1997) The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J Gerontol A Biol Sci Med Sci 52:M201–M208PubMedCrossRefGoogle Scholar
  29. Conti A et al (2007) Nitric oxide in the injured spinal cord: synthases cross-talk, oxidative stress and inflammation. Brain Res Rev 54:205–218PubMedCrossRefGoogle Scholar
  30. Crowe SM et al (2010) The macrophage: the intersection between HIV infection and atherosclerosis. J Leukoc Biol 87:589–598PubMedPubMedCentralCrossRefGoogle Scholar
  31. d’Ettorre G et al (2015) Probiotics reduce inflammation in antiretroviral treated, HIV-infected individuals: results of the “Probio-HIV” clinical trial. PLoS One 10:e0137200PubMedPubMedCentralCrossRefGoogle Scholar
  32. Decrion AZ, Dichamp I, Varin A, Herbein G (2005) HIV and inflammation. Curr HIV Res 3:243–259PubMedCrossRefGoogle Scholar
  33. Desquilbet L et al (2007) HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci 62(11):1279–1286. AIDS In PressPubMedCrossRefGoogle Scholar
  34. Dion ML et al (2004) HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21:757–768PubMedCrossRefGoogle Scholar
  35. Doisne JM et al (2004) CD8+ T cells specific for EBV, cytomegalovirus, and influenza virus are activated during primary HIV infection. J Immunol 173:2410–2418PubMedCrossRefGoogle Scholar
  36. Douek DC et al (2002) HIV preferentially infects HIV-specific CD4+ T cells. Nature 417:95–98PubMedCrossRefGoogle Scholar
  37. Dunn HS et al (2002) Dynamics of CD4 and CD8 T cell responses to cytomegalovirus in healthy human donors. J Infect Dis 186:15–22PubMedCrossRefGoogle Scholar
  38. Effros RB, Pawelec G (1997) Replicative senescence of T cells: does the Hayflick limit lead to immune exhaustion? Immunol Today 18:450–454PubMedCrossRefGoogle Scholar
  39. Effros RB et al (1996) Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 10:F17–F22PubMedCrossRefGoogle Scholar
  40. Erlandson KM, Jiang Y, Debanne SM, McComsey GA (2015) Rosuvastatin worsens insulin resistance in HIV-infected adults on antiretroviral therapy. Clin Infect Dis 61:1566–1572PubMedPubMedCentralCrossRefGoogle Scholar
  41. Erlandson KM, Jiang Y, Debanne SM, McComsey GA (2016) Effects of 96 weeks of rosuvastatin on bone, muscle, and fat in HIV-infected adults on effective antiretroviral therapy. AIDS Res Hum Retrovir 32(4):311–316PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fabre-Mersseman V et al (2014) Vitamin D supplementation is associated with reduced immune activation levels in HIV-1-infected patients on suppressive antiretroviral therapy. AIDS 28:2677–2682PubMedCrossRefGoogle Scholar
  43. Fauci AS, Mavilio D, Kottilil S (2005) NK cells in HIV infection: paradigm for protection or targets for ambush. Nat Rev Immunol 5:835–843PubMedCrossRefGoogle Scholar
  44. Favre D et al (2011) HIV disease progression correlates with the generation of dysfunctional naive CD8low T cells. Blood 117(7):2189–2199PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ferreira C, Barthlott T, Garcia S, Zamoyska R, Stockinger B (2000) Differential survival of naive CD4 and CD8 T cells. J Immunol 165:3689–3694PubMedCrossRefGoogle Scholar
  46. Ferrucci L et al (1999) Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47:639–646PubMedCrossRefGoogle Scholar
  47. Foulds KE et al (2002) Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 168:1528–1532PubMedCrossRefGoogle Scholar
  48. Franceschi C, Valensin S, Fagnoni F, Barbi C, Bonafe M (1999) Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load. Exp Gerontol 34:911–921PubMedCrossRefGoogle Scholar
  49. Fried LP et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156PubMedCrossRefGoogle Scholar
  50. Funderburg NT et al (2015) Rosuvastatin reduces vascular inflammation and T-cell and monocyte activation in HIV-infected subjects on antiretroviral therapy. J Acquir Immune Defic Syndr 68:396–404PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gamadia LE et al (2004) The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol 172:6107–6114PubMedCrossRefGoogle Scholar
  52. Gautier D, Beq S, Cortesao CS, Sousa AE, Cheynier R (2007) Efficient thymopoiesis contributes to the maintenance of peripheral CD4 T cells during chronic human immunodeficiency virus type 2 infection. J Virol 81:12685–12688PubMedPubMedCentralCrossRefGoogle Scholar
  53. George VK et al (2015) HIV infection worsens age-associated defects in antibody responses to influenza vaccine. J Infect Dis 211:1959–1968PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ginaldi L, De Martinis M, Monti D, Franceschi C (2005) Chronic antigenic load and apoptosis in immunosenescence. Trends Immunol 26:79–84PubMedCrossRefGoogle Scholar
  55. Giorgi JV et al (1993) Elevated levels of CD38+ CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS cohort study. J Acquir Immune Defic Syndr 6:904–912PubMedGoogle Scholar
  56. Giorgi JV et al (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179:859–870PubMedCrossRefGoogle Scholar
  57. Goodwin SR et al (2013) Dipeptidyl peptidase IV inhibition does not adversely affect immune or virological status in HIV infected men and women: a pilot safety study. J Clin Endocrinol Metab 98:743–751PubMedCrossRefGoogle Scholar
  58. Gougeon ML, Montagnier L (1993) Apoptosis in AIDS. Science 260:1269–1270PubMedCrossRefGoogle Scholar
  59. Greenstein BD, Fitzpatrick FT, Kendall MD, Wheeler MJ (1987) Regeneration of the thymus in old male rats treated with a stable analogue of LHRH. J Endocrinol 112:345–350PubMedCrossRefGoogle Scholar
  60. Griffin WS, Mrak RE (2002) Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 72:233–238PubMedPubMedCentralGoogle Scholar
  61. Group I.S.S et al (2015) Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med 373:795–807CrossRefGoogle Scholar
  62. Groux H et al (1992) Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 175:331–340PubMedCrossRefGoogle Scholar
  63. Guo X et al (2016) The role of HIV-1 in affecting the proliferation ability of HPCs derived from BM. J Acquir Immune Defic Syndr 71:467–473PubMedCrossRefGoogle Scholar
  64. Gupta SK et al (2013) Pentoxifylline, inflammation, and endothelial function in HIV-infected persons: a randomized, placebo-controlled trial. PLoS One 8:e60852PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hattab S et al (2014) Comparative impact of antiretroviral drugs on markers of inflammation and immune activation during the first two years of effective therapy for HIV-1 infection: an observational study. BMC Infect Dis 14:122PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hazenberg MD et al (2003) Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17:1881–1888PubMedCrossRefGoogle Scholar
  67. Hearps AC et al (2012a) HIV infection induces age-related changes to monocytes and innate immune activation in young men that persist despite combination antiretroviral therapy. AIDS 26:843–853PubMedCrossRefGoogle Scholar
  68. Hearps AC et al (2012b) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11:867–875PubMedCrossRefGoogle Scholar
  69. Henson SM et al (2014) p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest 124:4004–4016PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hey-Cunningham WJ et al (2015) Early antiretroviral therapy with raltegravir generates sustained reductions in HIV reservoirs but not lower T-cell activation levels. AIDS 29:911–919PubMedCrossRefGoogle Scholar
  71. Homann D, Teyton L, Oldstone MB (2001) Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 7:913–919PubMedCrossRefGoogle Scholar
  72. Hsue PY et al (2004) Progression of atherosclerosis as assessed by carotid intima-media thickness in patients with HIV infection. Circulation 109:1603–1608PubMedCrossRefGoogle Scholar
  73. Hsue PY et al (2006) Increased carotid intima-media thickness in HIV patients is associated with increased cytomegalovirus-specific T-cell responses. AIDS 20:2275–2283PubMedCrossRefGoogle Scholar
  74. Hunt PW et al (2011) Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis 203:1474–1483PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jaworowski A et al (2006) Normal CD16 expression and phagocytosis of Mycobacterium avium complex by monocytes from a current cohort of HIV-1-infected patients. J Infect Dis 193:693–697PubMedCrossRefGoogle Scholar
  76. Jing Y et al (2009) Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol 70:777–784PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kawakami K, Scheidereit C, Roeder RG (1988) Identification and purification of a human immunoglobulin-enhancer-binding protein (NF-kappa B) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro. Proc Natl Acad Sci U S A 85:4700–4704PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kelley KW, Arkins S, Minshall C, Liu Q, Dantzer R (1996) Growth hormone, growth factors and hematopoiesis. Horm Res 45:38–45PubMedCrossRefGoogle Scholar
  79. Kendall MD et al (1990) Reversal of aging changes in the thymus of rats by chemical or surgical castration. Cell Tissue Res 261:555–564PubMedCrossRefGoogle Scholar
  80. Kovacs JA et al (1996) Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 335:1350–1356PubMedCrossRefGoogle Scholar
  81. Kyoizumi S et al (2013) Age-associated changes in the differentiation potentials of human circulating hematopoietic progenitors to T- or NK-lineage cells. J Immunol 190:6164–6172PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lachmann R et al (2015) A comparative phase 1 clinical trial to identify anti-infective mechanisms of vitamin D in people with HIV infection. AIDS 29:1127–1135PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lanna A, Henson SM, Escors D, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol 15:965–972PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lelievre JD et al (2012) Initiation of c-ART in HIV-1 infected patients is associated with a decrease of the metabolic activity of the thymus evaluated using FDG–PET/computed tomography. J Acquir Immune Defic Syndr 61:56–63PubMedCrossRefGoogle Scholar
  85. Levy Y et al (2009) Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest 119:997–1007PubMedPubMedCentralGoogle Scholar
  86. Liovat AS et al (2012) Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection. PLoS One 7:e46143PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mackall CL, Granger L, Sheard MA, Cepeda R, Gress RE (1993) T-cell regeneration after bone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood 82:2585–2594PubMedGoogle Scholar
  88. Markowitz M et al (2014) A randomized open-label study of 3- versus 5-drug combination antiretroviral therapy in newly HIV-1-infected individuals. J Acquir Immune Defic Syndr 66:140–147PubMedPubMedCentralGoogle Scholar
  89. Mavilio D et al (2005) Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci U S A 102:2886–2891PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mavilio D et al (2006) Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection. J Exp Med 203:2339–2350PubMedPubMedCentralCrossRefGoogle Scholar
  91. McArthur JC et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS cohort study. Neurology 43:2245–2252PubMedCrossRefGoogle Scholar
  92. McCann SM et al (1998) The nitric oxide hypothesis of aging. Exp Gerontol 33:813–826PubMedCrossRefGoogle Scholar
  93. Merrill JE (1992) Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathological. Dev Neurosci 14:1–10PubMedCrossRefGoogle Scholar
  94. Merrill JE, Koyanagi Y, Chen IS (1989) Interleukin-1 and tumor necrosis factor alpha can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol 63:4404–4408PubMedPubMedCentralGoogle Scholar
  95. Meyaard L et al (1992) Programmed death of T cells in HIV-1 infection. Science 257:217–219PubMedCrossRefGoogle Scholar
  96. Moir S, Fauci AS (2014) B-cell exhaustion in HIV infection: the role of immune activation. Curr Opin HIV AIDS 9:472–477PubMedCrossRefGoogle Scholar
  97. Moir S et al (2001) HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proc Natl Acad Sci U S A 98:10362–10367PubMedPubMedCentralCrossRefGoogle Scholar
  98. Moir S et al (2008a) Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 205:1797–1805PubMedPubMedCentralCrossRefGoogle Scholar
  99. Moir S et al (2008b) Normalization of B cell counts and subpopulations after antiretroviral therapy in chronic HIV disease. J Infect Dis 197:572–579PubMedCrossRefGoogle Scholar
  100. Molina JM, Scadden DT, Byrn R, Dinarello CA, Groopman JE (1989) Production of tumor necrosis factor alpha and interleukin 1 beta by monocytic cells infected with human immunodeficiency virus. J Clin Invest 84:733–737PubMedPubMedCentralCrossRefGoogle Scholar
  101. Montoya CJ et al (2012) Randomized clinical trial of lovastatin in HIV-infected, HAART naive patients (NCT00721305). J Infect 65:549–558PubMedCrossRefGoogle Scholar
  102. Morris L et al (1998) HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J Exp Med 188:233–245PubMedPubMedCentralCrossRefGoogle Scholar
  103. Moses A, Nelson J, Bagby GC Jr (1998) The influence of human immunodeficiency virus-1 on hematopoiesis. Blood 91:1479–1495PubMedGoogle Scholar
  104. Nakanjako D et al (2015) Atorvastatin reduces T-cell activation and exhaustion among HIV-infected cART-treated suboptimal immune responders in Uganda: a randomised crossover placebo-controlled trial. Tropical Med Int Health 20:380–390CrossRefGoogle Scholar
  105. Napolitano LA et al (2002) Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 16:1103–1111PubMedCrossRefGoogle Scholar
  106. Pacanowski J et al (2001) Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 98:3016–3021PubMedCrossRefGoogle Scholar
  107. Papagno L et al (2002) Comparison between HIV- and CMV-specific T cell responses in long-term HIV infected donors. Clin Exp Immunol 130:509–517PubMedPubMedCentralCrossRefGoogle Scholar
  108. Papagno L et al (2004) Immune activation and CD8(+) T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2:E20PubMedPubMedCentralCrossRefGoogle Scholar
  109. Parmigiani A et al (2013) Impaired antibody response to influenza vaccine in HIV-infected and uninfected aging women is associated with immune activation and inflammation. PLoS One 8:e79816PubMedPubMedCentralCrossRefGoogle Scholar
  110. Paton NI et al (2012) Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA 308:353–361PubMedCrossRefGoogle Scholar
  111. Pensieroso S et al (2013) B-cell subset alterations and correlated factors in HIV-1 infection. AIDS 27:1209–1217PubMedCrossRefGoogle Scholar
  112. Piconi S et al (2011) Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood 118:3263–3272PubMedCrossRefGoogle Scholar
  113. Pommier JP et al (1997) Immunosenescence in HIV pathogenesis. Virology 231:148–154PubMedCrossRefGoogle Scholar
  114. Redd AD et al (2015) Decreased monocyte activation with daily acyclovir use in HIV-1/HSV-2 coinfected women. Sex Transm Infect 91:485–488PubMedCrossRefGoogle Scholar
  115. Reeves RK et al (2015) Antigen-specific NK cell memory in rhesus macaques. Nat Immunol 16:927–932PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rieckmann P, Poli G, Fox CH, Kehrl JH, Fauci AS (1991) Recombinant gp120 specifically enhances tumor necrosis factor-alpha production and Ig secretion in B lymphocytes from HIV-infected individuals but not from seronegative donors. J Immunol 147:2922–2927PubMedGoogle Scholar
  117. Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA (1995) CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest 95:2061–2066PubMedPubMedCentralCrossRefGoogle Scholar
  118. Routy JP et al (2015) Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med 16:48–56PubMedCrossRefGoogle Scholar
  119. Sauce D et al (2011) HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood 117:5142–5151PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sauce D et al (2012) Lymphopenia-driven homeostatic regulation of naive T cells in elderly and thymectomized young adults. J Immunol 189:5541–5548PubMedCrossRefGoogle Scholar
  121. Schouten J et al (2014) Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin Infect Dis 59:1787–1797PubMedCrossRefGoogle Scholar
  122. Schuetz A et al (2014) Initiation of ART during early acute HIV infection preserves mucosal Th17 function and reverses HIV-related immune activation. PLoS Pathog 10:e1004543PubMedPubMedCentralCrossRefGoogle Scholar
  123. Scutellari PN, Orzincolo C, Guarnelli EM (1996) Periodontal disease in patients with HIV infection. Radiographic study. Radiol Med (Torino) 92:562–568Google Scholar
  124. Silvestri G et al (2003) Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18:441–452PubMedCrossRefGoogle Scholar
  125. Simmons A, Aluvihare V, McMichael A (2001) Nef triggers a transcriptional program in T cells imitating single- signal T cell activation and inducing HIV virulence mediators. Immunity 14:763–777PubMedCrossRefGoogle Scholar
  126. Solana R, Campos C, Pera A, Tarazona R (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61PubMedCrossRefGoogle Scholar
  127. Soumelis V et al (2001) Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98:906–912PubMedCrossRefGoogle Scholar
  128. Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z, Victorino RM (2002) CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 169:3400–3406PubMedCrossRefGoogle Scholar
  129. Stockmann M et al (2000) Mechanisms of epithelial barrier impairment in HIV infection. Ann N Y Acad Sci 915:293–303PubMedCrossRefGoogle Scholar
  130. Swingler S et al (1999) HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 5:997–103PubMedCrossRefGoogle Scholar
  131. Tenorio AR et al (2015) Rifaximin has a marginal impact on microbial translocation, T-cell activation and inflammation in HIV-positive immune non-responders to antiretroviral therapy – ACTG A5286. J Infect Dis 211:780–790PubMedCrossRefGoogle Scholar
  132. Valcour VG, Shikuma CM, Watters MR, Sacktor NC (2004) Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms. AIDS 18(Suppl 1):S79–S86PubMedPubMedCentralCrossRefGoogle Scholar
  133. van Lelyveld SF et al (2015) Maraviroc intensification of cART in patients with suboptimal immunological recovery: a 48-week, placebo-controlled randomized trial. PLoS One 10:e0132430PubMedPubMedCentralCrossRefGoogle Scholar
  134. Vesterbacka J, Barqasho B, Haggblom A, Nowak P (2015) Effects of co-trimoxazole on microbial translocation in HIV-1 infected patients initiating antiretroviral therapy. AIDS Res Hum Retrovir 31:830–836PubMedCrossRefGoogle Scholar
  135. Villinger F et al (2001) Chronic immune stimulation accelerates SIV-induced disease progression. J Med Primatol 30:254–259PubMedCrossRefGoogle Scholar
  136. Wallace DL et al (2006) Prolonged exposure of naive CD8+ T cells to interleukin-7 or interleukin-15 stimulates proliferation without differentiation or loss of telomere length. Immunology 119:243–253PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wallet MA et al (2015) Increased inflammation but similar physical composition and function in older-aged, HIV-1 infected subjects. BMC Immunol 16:43PubMedPubMedCentralCrossRefGoogle Scholar
  138. Weaver JD et al (2002) Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59:371–378PubMedCrossRefGoogle Scholar
  139. Weiss L, Haeffner-Cavaillon N, Laude M, Gilquin J, Kazatchkine MD (1989) HIV infection is associated with the spontaneous production of interleukin-1 (IL-1) in vivo and with an abnormal release of IL-1 alpha in vitro. AIDS 3:695–699PubMedCrossRefGoogle Scholar
  140. Wittkop L et al (2013) Effect of cytomegalovirus-induced immune response, self antigen-induced immune response, and microbial translocation on chronic immune activation in successfully treated HIV type 1-infected patients: the ANRS CO3 Aquitaine Cohort. J Infect Dis 207:622–627PubMedCrossRefGoogle Scholar
  141. Wolthers KC et al (1996) T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 274:1543–1547PubMedCrossRefGoogle Scholar
  142. Yang OO, Kelesidis T, Cordova R, Khanlou H (2014) Immunomodulation of antiretroviral drug-suppressed chronic HIV-1 infection in an oral probiotic double-blind placebo-controlled trial. AIDS Res Hum Retrovir 30:988–995PubMedCrossRefGoogle Scholar
  143. Yi TJ et al (2013) A randomized controlled pilot trial of valacyclovir for attenuating inflammation and immune activation in HIV/herpes simplex virus 2-coinfected adults on suppressive antiretroviral therapy. Clin Infect Dis 57:1331–1338PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Victor Appay
    • 1
    • 2
  • Delphine Sauce
    • 1
  • Anthony D. Kelleher
    • 3
    • 4
  1. 1.Sorbonne Université, INSERMCentre d’Immunologie et des Maladies Infectieuses (CIMI-Paris)ParisFrance
  2. 2.International Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
  3. 3.The Kirby Institute of Infectious Diseases in SocietyUNSW AustraliaSydneyAustralia
  4. 4.St Vincent’s Centre for Applied Medical ResearchDarlinghurst/SydneyAustralia

Personalised recommendations