Senescence Induced by DNA Demethylating Drugs to Treat Solid Tumors

  • Simone Jueliger
  • Pietro Taverna
  • Oriana Lo Re
  • Manlio Vinciguerra
Living reference work entry


DNA methylation is a process by which methyl groups are added to DNA, modifying its function. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. DNA methylation is aberrant in all forms of cancer, but it is not fully understood how this occurs and what is its role in tumorigenesis. Aberrant DNA methylation in cancer can be generated following cell transformation or generated in a programmed manner in a subpopulation of tissue cells during normal aging and cell senescence predisposing them for tumorigenesis. Regardless, DNA methylation contributes to the tumor state by inhibiting the plasticity of cell differentiation DNA methylation. DNA demethylating agents, such as decitabine, exert their anticancer activity by triggering a drug-induced cell senescence program that induces cancer cells to exit cell cycle and stop proliferating, which is considered per se an important tumor suppressive mechanism. Moreover, specific senescence-associated DNA methylation changes are observed in normal and cancer cells. In this chapter we will describe advances in our knowledge about (i) the development of novel generation DNA demethylating drugs and (ii) the molecular mediators, prognostic indicators, and tailoring tools for DNA demethylating drug-induced senescence in cancer cells. We focus on solid tumors, in particular on gastrointestinal tumors, and we describe the current evidence that epigenetic hypomethylation therapies possess significant immunomodulatory effects by controlling cell senescence. The immunomodulatory activities of DNA demethylating drugs might lead to improved immune recognition of cancer/senescent cells and on novel immunotherapies through combinatorial epigenetic immunotherapy approaches.


Epigenetic Therapy Guadecitabine DNA hypomethylating agents Hepatocellular Carcinoma Anti-cancer Therapies Solid Tumors 



This work was supported by grants from the European Social Fund and European Regional Development Fund – Project MAGNET (No. CZ.02.1.01/0.0/0.0/15_003/0000492).


  1. Abdelfatah E, Kerner Z, Nanda N, Ahuja N (2016) Epigenetic therapy in gastrointestinal cancer: the right combination. Ther Adv Gastroenterol 9(4):560–579CrossRefGoogle Scholar
  2. Aparicio A, Weber JS (2002) Review of the clinical experience with 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumors. Curr Opin Investig Drugs 3(4):627–633PubMedGoogle Scholar
  3. Azuara D, Rodriguez-Moranta F, de Oca J, Soriano-Izquierdo A, Mora J, Guardiola J et al (2010) Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin Colorectal Cancer 9(3):168–176PubMedCrossRefGoogle Scholar
  4. Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A (2014) LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 9(10):e109478PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barrero MJ, Sese B, Kuebler B, Bilic J, Boue S, Marti M et al (2013) Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency. Cell Rep 3(4):1005–1011PubMedCrossRefGoogle Scholar
  6. Barzily-Rokni M, Friedman N, Ron-Bigger S, Isaac S, Michlin D, Eden A (2011) Synergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16(CDKN2A). Nucleic Acids Res 39(4):1326–1335PubMedCrossRefGoogle Scholar
  7. Benson EA, Skaar TC, Liu Y, Nephew KP, Matei D (2015) Carboplatin with decitabine therapy, in recurrent platinum resistant ovarian cancer, alters circulating miRNAs concentrations: a pilot study. PLoS One 10(10):e0141279PubMedPubMedCentralCrossRefGoogle Scholar
  8. Borghesan M, Mazzoccoli G, Sheedfar F, Oben J, Pazienza V, Vinciguerra M (2014) Histone variants and lipid metabolism. Biochem Soc Trans 42(5):1409–1413PubMedCrossRefGoogle Scholar
  9. Borghesan M, Fusilli C, Rappa F, Panebianco C, Rizzo G, Oben JA, Mazzoccoli G, Faulkes C, Pata I, Agodi A, Rezaee F, Minogue S, Warren A, Peterson A, Sedivy JM, Douet J, Buschbeck M, Cappello F, Mazza T, Pazienza V, Vinciguerra M (2016) DNA Hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res 76(3):594–606PubMedPubMedCentralCrossRefGoogle Scholar
  10. Braun CJ, Hemann MT (2016) Rewiring the solid tumor epigenome for cancer therapy. Expert Rev Anticancer Ther 16(9):977–987PubMedCrossRefGoogle Scholar
  11. Campa D, Pastore M, Gentiluomo M, Talar-Wojnarowska R, Kupcinskas J, Malecka-Panas E et al (2016) Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget 7:57011PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cantarino N, Douet J, Buschbeck M (2013) MacroH2A – an epigenetic regulator of cancer. Cancer Lett 336(2):247–252PubMedCrossRefGoogle Scholar
  13. Carethers JM, Jung BH (2015) Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology 149(5):1177–90 e3PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carmona FJ, Azuara D, Berenguer-Llergo A, Fernandez AF, Biondo S, de Oca J et al (2013) DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer. Cancer Prev Res (Phila) 6(7):656–665CrossRefGoogle Scholar
  15. Carragher LA, Snell KR, Giblett SM, Aldridge VS, Patel B, Cook SJ et al (2010) V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol Med 2(11):458–471PubMedPubMedCentralCrossRefGoogle Scholar
  16. Choi IS, Wu TT (2005) Epigenetic alterations in gastric carcinogenesis. Cell Res 15(4):247–254PubMedCrossRefGoogle Scholar
  17. Chuang JC, Warner SL, Vollmer D, Vankayalapati H, Redkar S, Bearss DJ et al (2010) S110, a 5-Aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 9(5):1443–1450PubMedPubMedCentralCrossRefGoogle Scholar
  18. Coral S, Covre A, Nicolay HJ, Parisi G, Rizzo A, Colizzi F et al (2012) Epigenetic remodelling of gene expression profiles of neoplastic and normal tissues: immunotherapeutic implications. Br J Cancer 107(7):1116–1124PubMedPubMedCentralCrossRefGoogle Scholar
  19. Coral S, Parisi G, Nicolay HJ, Colizzi F, Danielli R, Fratta E et al (2013) Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide. Cancer Immunol Immunother 62(3):605–614PubMedCrossRefGoogle Scholar
  20. Covre A, Coral S, Di Giacomo AM, Taverna P, Azab M, Maio M (2015) Epigenetics meets immune checkpoints. Semin Oncol 42(3):506–513PubMedCrossRefGoogle Scholar
  21. Creppe C, Janich P, Cantarino N, Noguera M, Valero V, Musulen E et al (2012) MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells. Mol Cell Biol 32(8):1442–1452PubMedPubMedCentralCrossRefGoogle Scholar
  22. Creusot F, Acs G, Christman JK (1982) Inhibition of DNA methyltransferase and induction of friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 257(4):2041–2048PubMedGoogle Scholar
  23. Cruickshanks HA, McBryan T, Nelson DM, Vanderkraats ND, Shah PP, van Tuyn J et al (2013) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15(12):1495–1506PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cui C, Lu Z, Yang L, Gao Y, Liu W, Gu L et al (2016) Genome-wide identification of differential methylation between primary and recurrent hepatocellular carcinomas. Mol Carcinog 55(7): 1163–1174PubMedCrossRefGoogle Scholar
  25. Davare MA, Saborowski A, Eide CA, Tognon C, Smith RL, Elferich J et al (2013) Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc Natl Acad Sci USA 110(48): 19519–19524PubMedPubMedCentralCrossRefGoogle Scholar
  26. De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T (1996) The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci USA 93(14):7149–7153PubMedPubMedCentralCrossRefGoogle Scholar
  27. Decottignies A, d’Adda di Fagagna F (2011) Epigenetic alterations associated with cellular senescence: a barrier against tumorigenesis or a red carpet for cancer? Semin Cancer Biol 21(6):360–366PubMedCrossRefGoogle Scholar
  28. Di Mitri D, Alimonti A (2016) Non-cell-autonomous regulation of cellular senescence in cancer. Trends Cell Biol 26(3):215–226PubMedCrossRefGoogle Scholar
  29. Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S, Jost TR et al (2014) Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515(7525):134–137PubMedCrossRefGoogle Scholar
  30. Di Mitri D, Toso A, Alimonti A (2015) Tumor-infiltrating myeloid cells drive senescence evasion and chemoresistance in tumors. Oncoimmunology 4(9):e988473PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383(9933):1990–1998PubMedCrossRefGoogle Scholar
  32. Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM et al (2006) Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 26(3):1156–1164PubMedPubMedCentralCrossRefGoogle Scholar
  33. El-Khoueiry AM, Mulcahy MF, Bekaii-Saab T, Kim R, Denlinger C, Goel R, Gupta S, Jueliger S, Oganesian A, Keer A, Nemunaitis A (2015) Abstract 2947: Pharmacodynamic (PD) and pharmacokinetic (PK) results of the second-generation hypomethylating agent, SGI-110, in patients with hepatocellular carcinoma (HCC) after progression on sorafenib. Cancer Res 75(15 Suppl):2947CrossRefGoogle Scholar
  34. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10(3): 223–232PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fonsatti E, Nicolay HJ, Sigalotti L, Calabro L, Pezzani L, Colizzi F et al (2007) Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 13(11):3333–3338PubMedCrossRefGoogle Scholar
  36. Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL (2010) The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev 24(1):21–32PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gaspar-Maia A, Qadeer ZA, Hasson D, Ratnakumar K, Leu NA, Leroy G et al (2013) MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat Commun 4:1565PubMedPubMedCentralCrossRefGoogle Scholar
  38. Goni L, Milagro FI, Cuervo M, Martinez JA (2014) Single-nucleotide polymorphisms and DNA methylation markers associated with central obesity and regulation of body weight. Nutr Rev 72(11):673–690PubMedCrossRefGoogle Scholar
  39. Goruppi S, Patten RD, Force T, Kyriakis JM (2007) Helix-Loop-Helix protein p8, a transcriptional regulator required for cardiomyocyte hypertrophy and cardiac fibroblast matrix metalloprotease induction. Mol Cell Biol 27(3):993–1006PubMedCrossRefGoogle Scholar
  40. Grasso D, Garcia MN, Hamidi T, Cano C, Calvo E, Lomberk G et al (2014) Genetic inactivation of the pancreatitis-inducible gene Nupr1 impairs PanIN formation by modulating Kras(G12D)-induced senescence. Cell Death Differ 21(10):1633–1641PubMedPubMedCentralCrossRefGoogle Scholar
  41. Grasso D, Bintz J, Lomberk G, Molejon MI, Loncle C, Garcia MN et al (2015) Pivotal role of the chromatin protein Nupr1 in Kras-induced senescence and transformation. Sci Rep 5:17549PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hanzelmann S, Beier F, Gusmao EG, Koch CM, Hummel S, Charapitsa I et al (2015) Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. Clin Epigenetics 7:19PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, Flagg K, Hou J, Zhang H, Yi S, Jafari M, Lin D, Chung C, Caughey BA, Li G, Dhar D, Shi W, Zheng L, Hou R, Zhu J, Zhao L, Fu X, Zhang E, Zhang C, Zhu JK, Karin M, Xu RH, Zhang K (2017) DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci USA. 2017 Jul 11;114(28):7414–7419. Epub 2017 Jun 26
  44. Henikoff S, Smith MM (2015) Histone variants and epigenetics. Cold Spring Harb Perspect Biol 7(1):a019364PubMedPubMedCentralCrossRefGoogle Scholar
  45. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054PubMedCrossRefGoogle Scholar
  46. Hernandez-Vargas H, Lambert MP, Le Calvez-Kelm F, Gouysse G, McKay-Chopin S, Tavtigian SV et al (2010) Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS One 5(3):e9749PubMedPubMedCentralCrossRefGoogle Scholar
  47. Heyn H, Esteller M (2012) DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 13(10):679–692PubMedCrossRefGoogle Scholar
  48. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115PubMedPubMedCentralCrossRefGoogle Scholar
  49. Issa JP (2014) Aging and epigenetic drift: a vicious cycle. J Clin Invest 124(1):24–29PubMedPubMedCentralCrossRefGoogle Scholar
  50. Issa JP, Roboz G, Rizzieri D, Jabbour E, Stock W, O’Connell C et al (2015) Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol 16(9): 1099–1110PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jhunjhunwala S, Jiang Z, Stawiski EW, Gnad F, Liu J, Mayba O et al (2014) Diverse modes of genomic alteration in hepatocellular carcinoma. Genome Biol 15(8):436PubMedPubMedCentralGoogle Scholar
  52. Jiao L, Zhu J, Hassan MM, Evans DB, Abbruzzese JL, Li D (2007) K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas 34(1):55–62PubMedCrossRefGoogle Scholar
  53. Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhaes JP (2012) The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 15(5): 483–494PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20(1):85–93PubMedCrossRefGoogle Scholar
  55. Jueliger S, Lyons J, Azab M, Taverna P (2012) SGI-110, a novel second generation DNA hypomethylating agent, enhances sorafenib activity and alters methylation signature of HCC cell lines. Eur J Cancer 48(6):144CrossRefGoogle Scholar
  56. Jueliger S, Lyons J, Cannito S, Pata I, Pata P, Shkolnaya M, Lo Re O, Peyrou M, Villarroya F, Pazienza V, Rappa F, Cappello F, Azab M, Taverna P, Vinciguerra M (2016) Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics 11:709PubMedCentralCrossRefGoogle Scholar
  57. Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B et al (2011) Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1(7):598–607PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kalathur M, Toso A, Chen J, Revandkar A, Danzer-Baltzer C, Guccini I et al (2015) A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Nat Commun 6:7227PubMedCrossRefGoogle Scholar
  59. Kang GH, Lee S, Kim JS, Jung HY (2003) Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Investig 83(5):635–641PubMedCrossRefGoogle Scholar
  60. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106(8):1794–1803PubMedCrossRefGoogle Scholar
  61. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O’Brien S, Cortes J et al (2007) Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109(1):52–57PubMedCrossRefGoogle Scholar
  62. Kantarjian HM, Roboz GJ, Kropf PL, Yee KWL, O'Connell CL, Tibes R, Walsh KJ, Podoltsev NA, Griffiths EA, Jabbour E, Garcia-Manero G, Rizzieri D, Stock W, Savona MR, Rosenblat TL, Berdeja JG, Ravandi F, Rock EP, Hao Y, Azab M, Issa JJ (2017) Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol. 2017 Oct;18(10):1317–1326. Epub 2017 Aug 24
  63. Karahoca M, Momparler RL (2013) Pharmacokinetic and pharmacodynamic analysis of 5-aza-2′-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics 5(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  64. Karpf AR (2006) A potential role for epigenetic modulatory drugs in the enhancement of cancer/germ-line antigen vaccine efficacy. Epigenetics 1(3):116–120PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kisiel JB, Raimondo M, Taylor WR, Yab TC, Mahoney DW, Sun Z et al (2015) New DNA methylation markers for pancreatic cancer: discovery, tissue validation, and pilot testing in pancreatic juice. Clin Cancer Res 21(19):4473–4481PubMedPubMedCentralCrossRefGoogle Scholar
  66. Koch CM, Joussen S, Schellenberg A, Lin Q, Zenke M, Wagner W (2012) Monitoring of cellular senescence by DNA-methylation at specific CpG sites. Aging Cell 11(2):366–369PubMedCrossRefGoogle Scholar
  67. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N (2015) Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol 9(9):1799–1814PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kumegawa K, Maruyama R, Yamamoto E, Ashida M, Kitajima H, Tsuyada A et al (2016) A genomic screen for long noncoding RNA genes epigenetically silenced by aberrant DNA methylation in colorectal cancer. Sci Rep 6:26699PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG (2005) Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12(7):624–625PubMedCrossRefGoogle Scholar
  71. Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R (2016) DNA methylation based biomarkers in colorectal cancer: a systematic review. Biochim Biophys Acta 1866(1):106–120PubMedGoogle Scholar
  72. Lennon AM, Wolfgang CL, Canto MI, Klein AP, Herman JM, Goggins M et al (2014) The early detection of pancreatic cancer: what will it take to diagnose and treat curable pancreatic neoplasia? Cancer Res 74(13):3381–3389PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lin Q, Wagner W (2015) Epigenetic aging signatures are coherently modified in cancer. PLoS Genet 11(6):e1005334PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liu Y, Hawkins OE, Su Y, Vilgelm AE, Sobolik T, Thu YM et al (2013) Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-kappaB impairs this drug-induced senescence. EMBO Mol Med 5(1):149–166PubMedCrossRefGoogle Scholar
  75. Lowe R, Overhoff MG, Ramagopalan SV, Garbe JC, Koh J, Stampfer MR et al (2015) The senescent methylome and its relationship with cancer, ageing and germline genetic variation in humans. Genome Biol 16:194PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lubbert M, Suciu S, Baila L, Ruter BH, Platzbecker U, Giagounidis A et al (2011) Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol 29(15):1987–1996PubMedCrossRefGoogle Scholar
  77. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE et al (2013) Non-cell-autonomous tumor suppression by p53. Cell 153(2):449–460PubMedPubMedCentralCrossRefGoogle Scholar
  78. Martinez JA, Milagro FI, Claycombe KJ, Schalinske KL (2014) Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr 5(1):71–81PubMedPubMedCentralCrossRefGoogle Scholar
  79. Momparler RL, Rivard GE, Gyger M (1985) Clinical trial on 5-aza-2′-deoxycytidine in patients with acute leukemia. Pharmacol Ther 30(3):277–286PubMedCrossRefGoogle Scholar
  80. Odunsi K, Matsuzaki J, James SR, Mhawech-Fauceglia P, Tsuji T, Miller A et al (2014) Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res 2(1):37–49PubMedPubMedCentralCrossRefGoogle Scholar
  81. Park JH, Park J, Choi JK, Lyu J, Bae MG, Lee YG et al (2011) Identification of DNA methylation changes associated with human gastric cancer. BMC Med Genet 4:82Google Scholar
  82. Park JW, Baek IH, Kim YT (2012) Preliminary study analyzing the methylated genes in the plasma of patients with pancreatic cancer. Scand J Surg 101(1):38–44PubMedCrossRefGoogle Scholar
  83. Pazienza V, Tavano F, Benegiamo G, Vinciguerra M, Burbaci FP, Copetti M et al (2012) Correlations among PPARgamma, DNMT1, and DNMT3B expression levels and pancreatic cancer. PPAR Res 2012:461784PubMedPubMedCentralGoogle Scholar
  84. Pazienza V, Borghesan M, Mazza T, Sheedfar F, Panebianco C, Williams R et al (2014) SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY) 6(1):35–47CrossRefGoogle Scholar
  85. Pedersen KS, Bamlet WR, Oberg AL, de Andrade M, Matsumoto ME, Tang H et al (2011) Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls. PLoS One 6(3):e18223PubMedPubMedCentralCrossRefGoogle Scholar
  86. Pilarsky C, Grutzmann R (2015) Analysis of DNA methylation in pancreatic cancer: an update. Methods Mol Biol 1238:173–181PubMedCrossRefGoogle Scholar
  87. Podrini C, Koffas A, Chokshi S, Vinciguerra M, Lelliott CJ, White JK et al (2015) MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat-induced steatosis. FASEB J 29(5):1676–1687PubMedCrossRefGoogle Scholar
  88. Rappa F, Greco A, Podrini C, Cappello F, Foti M, Bourgoin L et al (2013) Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma. PLoS One 8(1):e54458PubMedPubMedCentralCrossRefGoogle Scholar
  89. Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210(4470):604–610PubMedCrossRefGoogle Scholar
  90. Roboz GJ, Kantarjian HM, Yee KWL, Kropf PL, O’Connell CL, Griffiths EA, Stock W, Daver NG, Jabbour E, Ritchie EK, Walsh KJ, Rizzieri D, Lunin SD, Curio T, Chung W, Hao Y, Lowder JN, Azab M, Issa JJ (2018) Dose, schedule, safety, and efficacy of guadecitabine in relapsed or refractory acute myeloid leukemia. Cancer. 2018 Jan 15;124(2):325–334. Epub 2017 Dec 6
  91. Roxburgh CS, Richards CH, Macdonald AI, Powell AG, McGlynn LM, McMillan DC et al (2013) The in situ local immune response, tumour senescence and proliferation in colorectal cancer. Br J Cancer 109(8):2207–2216PubMedPubMedCentralCrossRefGoogle Scholar
  92. Roychowdhury S, Chinnaiyan AM (2016) Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J Clin 66(1):75–88PubMedCrossRefGoogle Scholar
  93. Sapari NS, Loh M, Vaithilingam A, Soong R (2012) Clinical potential of DNA methylation in gastric cancer: a meta-analysis. PLoS One 7(4):e36275PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sidler C, Woycicki R, Kovalchuk I, Kovalchuk O (2014) WI-38 senescence is associated with global and site-specific hypomethylation. Aging (Albany NY) 6(7):564–574CrossRefGoogle Scholar
  95. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29PubMedCrossRefGoogle Scholar
  96. Sigalotti L, Fratta E, Coral S, Maio M (2014) Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol Ther 142(3):339–350PubMedCrossRefGoogle Scholar
  97. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R et al (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20(10):2429–2440PubMedCrossRefGoogle Scholar
  98. Simmer F, Brinkman AB, Assenov Y, Matarese F, Kaan A, Sabatino L et al (2012) Comparative genome-wide DNA methylation analysis of colorectal tumor and matched normal tissues. Epigenetics 7(12):1355–1367PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sipos F, Muzes G, Patai AV, Furi I, Peterfia B, Hollosi P et al (2013) Genome-wide screening for understanding the role of DNA methylation in colorectal cancer. Epigenomics 5(5):569–581PubMedCrossRefGoogle Scholar
  100. Skene PJ, Henikoff S (2013) Histone variants in pluripotency and disease. Development 140(12):2513–2524PubMedCrossRefGoogle Scholar
  101. Srivastava P, Paluch BE, Matsuzaki J, James SR, Collamat-Lai G, Karbach J et al (2014) Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts. Leuk Res 38(11):1332–1341PubMedPubMedCentralCrossRefGoogle Scholar
  102. Srivastava P, Paluch BE, Matsuzaki J, James SR, Collamat-Lai G, Taverna P et al (2015) Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts. Epigenetics 10(3):237–246PubMedPubMedCentralCrossRefGoogle Scholar
  103. Srivastava P, Paluch BE, Matsuzaki J, James SR, Collamat-Lai G, Blagitko-Dorfs N et al (2016) Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget 7(11):12840–12856PubMedPubMedCentralCrossRefGoogle Scholar
  104. Suzuki H, Yamamoto E, Nojima M, Kai M, Yamano HO, Yoshikawa K et al (2010) Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis 31(12):2066–2073PubMedCrossRefGoogle Scholar
  105. Tahara T, Arisawa T (2015) DNA methylation as a molecular biomarker in gastric cancer. Epigenomics 7(3):475–486PubMedCrossRefGoogle Scholar
  106. Tahara T, Maegawa S, Chung W, Garriga J, Jelinek J, Estecio MR et al (2013) Examination of whole blood DNA methylation as a potential risk marker for gastric cancer. Cancer Prev Res (Phila) 6(10):1093–1100CrossRefGoogle Scholar
  107. Talbert PB, Henikoff S (2010) Histone variants – ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275PubMedCrossRefGoogle Scholar
  108. Tan AC, Jimeno A, Lin SH, Wheelhouse J, Chan F, Solomon A et al (2009) Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol 3(5–6):425–438PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tang JC, Feng YL, Guo T, Xie AY, Cai XJ (2016) Circulating tumor DNA in hepatocellular carcinoma: trends and challenges. Cell Biosci 6:32PubMedPubMedCentralCrossRefGoogle Scholar
  110. Taylor SM, Jones PA (1982) Mechanism of action of eukaryotic DNA methyltransferase. Use of 5-azacytosine-containing DNA. J Mol Biol 162(3):679–692PubMedCrossRefGoogle Scholar
  111. Thompson MJ, Rubbi L, Dawson DW, Donahue TR, Pellegrini M (2015) Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes. PLoS One 10(6):e0128814PubMedPubMedCentralCrossRefGoogle Scholar
  112. van der Ploeg LH, Flavell RA (1980) DNA methylation in the human gamma delta beta-globin locus in erythroid and nonerythroid tissues. Cell 19(4):947–958PubMedCrossRefGoogle Scholar
  113. Vilgelm AE, Johnson CA, Prasad N, Yang J, Chen SC, Ayers GD et al (2016) Connecting the dots: therapy-induced senescence and a tumor-suppressive immune microenvironment. J Natl Cancer Inst 108(6):djv406PubMedCrossRefGoogle Scholar
  114. Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Mendez-Gonzalez J et al (2015) DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 61(6): 1945–1956PubMedCrossRefGoogle Scholar
  115. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M (2011) Pancreatic cancer. Lancet 378(9791):607–620PubMedPubMedCentralCrossRefGoogle Scholar
  116. Von Hoff DD, Slavik M, Muggia FM (1976) 5-Azacytidine. A new anticancer drug with effectiveness in acute myelogenous leukemia. Ann Intern Med 85(2):237–245CrossRefGoogle Scholar
  117. Wagner W, Weidner CI, Lin Q (2015) Do age-associated DNA methylation changes increase the risk of malignant transformation? BioEssays 37(1):20–24PubMedCrossRefGoogle Scholar
  118. Wanebo HJ, Kennedy BJ, Chmiel J, Steele G Jr, Winchester D, Osteen R (1993) Cancer of the stomach. A patient care study by the American College of Surgeons. Ann Surg 218(5):583–592PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wang Z, Yan J, Lin H, Hua F, Wang X, Liu H et al (2013) Toll-like receptor 4 activity protects against hepatocellular tumorigenesis and progression by regulating expression of DNA repair protein Ku70 in mice. Hepatology 57(5):1869–1881PubMedCrossRefGoogle Scholar
  120. Woloszynska-Read A, Mhawech-Fauceglia P, Yu J, Odunsi K, Karpf AR (2008) Intertumor and intratumor NY-ESO-1 expression heterogeneity is associated with promoter-specific and global DNA methylation status in ovarian cancer. Clin Cancer Res 14(11):3283–3290PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yamakuchi M, Lowenstein CJ (2009) MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8(5):712–715PubMedCrossRefGoogle Scholar
  122. Yi JM, Dhir M, Van Neste L, Downing SR, Jeschke J, Glockner SC et al (2011) Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clin Cancer Res 17(6):1535–1545PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yoo CB, Jeong S, Egger G, Liang G, Phiasivongsa P, Tang C et al (2007) Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 67(13):6400–6408PubMedCrossRefGoogle Scholar
  124. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101PubMedCrossRefGoogle Scholar
  125. Zhang YJ, Wu HC, Shen J, Ahsan H, Tsai WY, Yang HI et al (2007) Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clin Cancer Res 13(8):2378–2384PubMedCrossRefGoogle Scholar
  126. Zhang S, Chen P, Huang Z, Hu X, Chen M, Hu S et al (2015) Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a. Sci Rep 5:9787PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhao Y, Sun J, Zhang H, Guo S, Gu J, Wang W et al (2014) High-frequency aberrantly methylated targets in pancreatic adenocarcinoma identified via global DNA methylation analysis using methylCap-seq. Clin Epigenetics 6(1):18PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zouridis H, Deng N, Ivanova T, Zhu Y, Wong B, Huang D et al (2012) Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci Transl Med 4(156):156ra40CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Simone Jueliger
    • 1
  • Pietro Taverna
    • 2
    • 5
  • Oriana Lo Re
    • 3
  • Manlio Vinciguerra
    • 3
    • 4
  1. 1.Astex PharmaceuticalsCambridgeUK
  2. 2.Astex PharmaceuticalsPleasantonUSA
  3. 3.Center for Translational Medicine (CTM), International Clinical Research Center (ICRC)St. Anne’s University HospitalBrnoCzech Republic
  4. 4.Institute for Liver and Digestive HealthUniversity College London (UCL)LondonUK
  5. 5.Sunesis PharmaceuticalsSouth San FranciscoUSA

Personalised recommendations