Skip to main content

Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation

  • Living reference work entry
  • First Online:
  • 305 Accesses

Abstract

Vitamin D and the vitamin D receptor (VDR) play prominent roles in multiple aspects of human health and disease, and great interest is focused on the role that vitamin D might play in decreasing the risk of chronic illnesses such as autoimmune, infectious, and cardiovascular diseases. Humans normally get the majority of their vitamin D from exposure to sunlight. However, modern living and other cultural conditions limit our exposure to sunlight, and the frequency of people with vitamin D deficiency is generally high. Furthermore, the occurrence of vitamin D deficiency increases with age, i.e., due to a decreased capacity to produce vitamin D in old skin. The physiological actions of vitamin D are mediated by the VDR that functions as a ligand-induced transcription factor. The VDR is widely expressed by various cell types in the body, including many cells of the immune system, and vitamin D has strong immunomodulatory properties. The expression level of the VDR in cells is a key component for the cellular sensitivity to vitamin D, and vitamin D and VDR expression are consequently carefully regulated by a number of mechanisms. The VDR expression is modulated by the presence of its own ligand in most cell types. The typical response to vitamin D is up-regulation of VDR expression. This can in theory be caused by an increased rate of VDR synthesis and/or a decreased rate of receptor degradation. This chapter focus on how vitamin D up-regulates the VDR by protecting it from proteasomal degradation.

This is a preview of subscription content, log in via an institution.

References

  • Adams JS, Ren S, Liu PT, Chun RF, Lagishetty V, Gombart AF, Borregaard N, Modlin RL, Hewison M (2009) Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J Immunol 182(7):4289–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alroy I, Towers TL, Freedman LP (1995) Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol 15(10):5789–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbour NC, Prahl JM, DeLuca HF (1993) Stabilization of the vitamin D receptor in rat osteosarcoma cells through the action of 1,25-dihydroxyvitamin D3. Mol Endocrinol 7(10):1307–1312

    CAS  PubMed  Google Scholar 

  • Ascherio A, Munger KL, Simon KC (2010) Vitamin D and multiple sclerosis. Lancet Neurol 9(6):599–612

    Article  PubMed  Google Scholar 

  • Baeke F, Korf H, Overbergh L, van EE, Verstuyf A, Gysemans C, Mathieu C (2010a) Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D(3) in the immune system. J Steroid Biochem Mol Biol 121(1–2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C (2010b) Vitamin D: modulator of the immune system. Curr Opin Pharmacol 10(4):482–496

    Article  CAS  PubMed  Google Scholar 

  • Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O’Malley BW (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 85(10):3294–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckman MJ, Tadikonda P, Werner E, Prahl J, Yamada S, DeLuca HF (1996) Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry 35(25):8465–8472

    Article  CAS  PubMed  Google Scholar 

  • Bhalla AK, Amento EP, Clemens TL, Holick MF, Krane SM (1983) Specific high-affinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. J Clin Endocrinol Metab 57(6):1308–1310

    Article  CAS  PubMed  Google Scholar 

  • Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29(6):726–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchebner D, McGuigan F, Gerdhem P, Ridderstrale M, Akesson K (2016) Association between hypovitaminosis D in elderly women and long- and short-term mortality-results from the osteoporotic prospective risk assessment cohort. J Am Geriatr Soc 64(5):990–997

    Article  PubMed  Google Scholar 

  • Calado RT, Young NS (2009) Telomere diseases. N Engl J Med 361(24):2353–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361(9355):393–395

    Article  CAS  PubMed  Google Scholar 

  • Chapuy MC, Preziosi P, Maamer M, Arnaud S, Galan P, Hercberg S, Meunier PJ (1997) Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 7(5):439–443

    Article  CAS  PubMed  Google Scholar 

  • Chen TL, Li JM, Ye TV, Cone CM, Feldman D (1986) Hormonal responses to 1,25-dihydroxyvitamin D3 in cultured mouse osteoblast-like cells – modulation by changes in receptor level. J Cell Physiol 126(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Cencioni MT, Angelini DF, Borsellino G, Battistini L, Brosnan CF (2005) Transcriptional profiling of gamma delta T cells identifies a role for vitamin D in the immunoregulation of the V gamma 9V delta 2 response to phosphate-containing ligands. J Immunol 174(10):6144–6152

    Article  CAS  PubMed  Google Scholar 

  • Chi Y, Hong Y, Zong H, Wang Y, Zou W, Yang J, Kong X, Yun X, Gu J (2009) CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation. Biochem Biophys Res Commun 386(3):493–498

    Article  CAS  PubMed  Google Scholar 

  • Chun RF, Lauridsen AL, Suon L, Zella LA, Pike JW, Modlin RL, Martineau AR, Wilkinson RJ, Adams J, Hewison M (2010) Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 95(7):3368–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correale J, Ysrraelit MC, Gaitan MI (2009) Immunomodulatory effects of vitamin D in multiple sclerosis. Brain 132(Pt 5):1146–1160

    Article  PubMed  Google Scholar 

  • Costa EM, Feldman D (1987) Measurement of 1,25-dihydroxyvitamin D3 receptor turnover by dense amino acid labeling: changes during receptor up-regulation by vitamin D metabolites. Endocrinology 120(3):1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Costa EM, Hirst MA, Feldman D (1985) Regulation of 1,25-dihydroxyvitamin D3 receptors by vitamin D analogs in cultured mammalian cells. Endocrinology 117(5):2203–2210

    Article  CAS  PubMed  Google Scholar 

  • Davoodi F, Brenner RV, Evans SR, Schumaker LM, Shabahang M, Nauta RJ, Buras RR (1995) Modulation of vitamin D receptor and estrogen receptor by 1,25(OH)2-vitamin D3 in T-47D human breast cancer cells. J Steroid Biochem Mol Biol 54(3–4):147–153

    Article  CAS  PubMed  Google Scholar 

  • Feldman D, Pike JW, Adams JS (2011) Vitamin D, 3rd edn. Elsevier Academic Press, Burlington

    Google Scholar 

  • Fraser DR, Kodicek E (1970) Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature 228(5273):764–766

    Article  CAS  PubMed  Google Scholar 

  • Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18(12):7288–7293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Thomsen J, Charles P, Eriksen EF (2000) Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited. J Intern Med 247(2):260–268

    Article  CAS  PubMed  Google Scholar 

  • Gocek E, Kielbinski M, Marcinkowska E (2007) Activation of intracellular signaling pathways is necessary for an increase in VDR expression and its nuclear translocation. FEBS Lett 581(9):1751–1757

    Article  CAS  PubMed  Google Scholar 

  • Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19(9):1067–1077

    Article  CAS  PubMed  Google Scholar 

  • Goronzy JJ, Li G, Yu M, Weyand CM (2012) Signaling pathways in aged T cells – a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol 24(5):365–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grober U, Spitz J, Reichrath J, Kisters K, Holick MF (2013) Vitamin D: update 2013: from rickets prophylaxis to general preventive healthcare. Dermatoendocrinology 5(3):331–347

    Article  CAS  Google Scholar 

  • Haussler MR, Norman AW (1969) Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci USA 62(1):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, Jurutka PW (2013) Molecular mechanisms of vitamin D action. Calcif Tissue Int 92(2):77–98

    Article  CAS  PubMed  Google Scholar 

  • Healy KD, Frahm MA, DeLuca HF (2005) 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization. Arch Biochem Biophys 433(2):466–473

    Article  CAS  PubMed  Google Scholar 

  • Hess AF, Unger LJ (1921) The cure of infantile rickets by sunlight. JAMA 77(1):39

    Google Scholar 

  • Hess AF, Unger LJ, Pappenheimer AM (1922) Experimental rickets in rats: VII. The prevention of rickets by sunlight, by the rays of mercury vapor lamp, and by the carbon arc lamp. J Exp Med 36(4):427–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewison M (2012) Vitamin D and immune function: an overview. Proc Nutr Soc 71(1):50–61

    Article  CAS  PubMed  Google Scholar 

  • Heyne K, Heil TC, Bette B, Reichrath J, Roemer K (2015) MDM2 binds and inhibits vitamin D receptor. Cell Cycle 14(13):2003–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holick MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 80(6 Suppl):1678S–1688S

    Article  CAS  PubMed  Google Scholar 

  • Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  CAS  PubMed  Google Scholar 

  • Holick MF, Siris ES, Binkley N, Beard MK, Khan A, Katzer JT, Petruschke RA, Chen E, de Papp AE (2005) Prevalence of vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 90(6):3215–3224

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JC, Jurutka PW, Galligan MA, Terpening CM, Haussler CA, Samuels DS, Shimizu Y, Shimizu N, Haussler MR (1991) Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans- activation function. Proc Natl Acad Sci USA 88:9315–9319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17(4):193–201

    Article  CAS  PubMed  Google Scholar 

  • Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358(9292):1500–1503

    Article  CAS  PubMed  Google Scholar 

  • Jaaskelainen T, Ryhanen S, Mahonen A, DeLuca HF, Maenpaa PH (2000) Mechanism of action of superactive vitamin D analogs through regulated receptor degradation. J Cell Biochem 76(4):548–558

    Article  CAS  PubMed  Google Scholar 

  • Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, Walker LS, Lammas DA, Raza K, Sansom DM (2009) 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 183(9):5458–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery LE, Wood AM, Qureshi OS, Hou TZ, Gardner D, Briggs Z, Kaur S, Raza K, Sansom DM (2012) Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol 189(11):5155–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78(4):1193–1231

    Article  CAS  PubMed  Google Scholar 

  • Joseph RW, Bayraktar UD, Kim TK, St John LS, Popat U, Khalili J, Molldrem JJ, Wieder ED, Komanduri KV (2012) Vitamin D receptor upregulation in alloreactive human T cells. Hum Immunol 73(7):693–698

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Pantalena LC, Liu XK, Gaffen SL, Liu H, Rohowsky-Kochan C, Ichiyama K, Yoshimura A, Steinman L, Christakos S, Youssef S (2011) 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol 31(17):3653–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser MF, Heider U, Mieth M, Zang C, von Metzlere I, Sezer O (2013) The proteasome inhibitor bortezomib stimulates osteoblastic differentiation of human osteoblast precursors via upregulation of vitamin D receptor signalling. Eur J Haematol 90(4):263–272

    Article  CAS  PubMed  Google Scholar 

  • Kizaki M, Norman AW, Bishop JE, Lin CW, Karmakar A, Koeffler HP (1991) 1,25-dihydroxyvitamin D3 receptor RNA: expression in hematopoietic cells. Blood 77(6):1238–1247

    CAS  PubMed  Google Scholar 

  • Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992) Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355(6359):446–449

    Article  CAS  PubMed  Google Scholar 

  • Klopot A, Hance KW, Peleg S, Barsony J, Fleet JC (2007) Nucleo-cytoplasmic cycling of the vitamin D receptor in the enterocyte-like cell line, Caco-2. J Cell Biochem 100(3):617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kongsbak M, Levring TB, Geisler C, von Essen MR (2013) The vitamin D receptor and T cell function. Front Immunol 4(148):1–10

    CAS  Google Scholar 

  • Kongsbak M, von Essen MR, Boding L, Levring TB, Schjerling P, Lauritsen JP, Woetmann A, Odum N, Bonefeld CM, Geisler C (2014a) Vitamin D up-regulates the vitamin D receptor by protecting it from proteasomal degradation in human CD4+ T cells. PLoS One 9(5):e96695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kongsbak M, von Essen MR, Levring TB, Schjerling P, Woetmann A, Odum N, Bonefeld CM, Geisler C (2014b) Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunol 15:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kream BE, Jose MJ, DeLuca HF (1977) The chick intestinal cytosol binding protein for 1,25-dihydroxyvitamin D3: a study of analog binding. Arch Biochem Biophys 179(2):462–468

    Article  CAS  PubMed  Google Scholar 

  • Kreutz M, Andreesen R, Krause SW, Szabo A, Ritz E, Reichel H (1993) 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 82(4):1300–1307

    CAS  PubMed  Google Scholar 

  • Li XY, Xiao JH, Feng X, Qin L, Voorhees JJ (1997) Retinoid X receptor-specific ligands synergistically upregulate 1, 25-dihydroxyvitamin D3-dependent transcription in epidermal keratinocytes in vitro and in vivo. J Invest Dermatol 108(4):506–512

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Boudjelal M, Xiao JH, Peng ZH, Asuru A, Kang S, Fisher GJ, Voorhees JJ (1999) 1,25-dihydroxyvitamin D3 increases nuclear vitamin D3 receptors by blocking ubiquitin/proteasome-mediated degradation in human skin. Mol Endocrinol 13(10):1686–1694

    Article  CAS  PubMed  Google Scholar 

  • Liaskou E, Jeffery LE, Trivedi PJ, Reynolds GM, Suresh S, Bruns T, Adams DH, Sansom DM, Hirschfield GM (2014) Loss of CD28 expression by liver-infiltrating T cells contributes to pathogenesis of primary sclerosing cholangitis. Gastroenterology 147(1):221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22(4):477–501

    Article  CAS  PubMed  Google Scholar 

  • Lips P (2010) Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol 121(1–2):297–300

    Article  CAS  PubMed  Google Scholar 

  • Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140(6):845–858

    Article  CAS  PubMed  Google Scholar 

  • Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311(5768):1770–1773

    Article  CAS  PubMed  Google Scholar 

  • Long MD, Sucheston-Campbell LE, Campbell MJ (2015) Vitamin D receptor and RXR in the post-genomic era. J Cell Physiol 230(4):758–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macaulay R, Akbar AN, Henson SM (2013) The role of the T cell in age-related inflammation. Age (Dordr) 35(3):563–572

    Article  CAS  Google Scholar 

  • MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76(4):1536–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahonen A, Maenpaa PH (1994) Steroid hormone modulation of vitamin D receptor levels in human MG-63 osteosarcoma cells. Biochem Biophys Res Commun 205(2):1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf DJ, Pike JW, Haussler MR (1987) Avian and mammalian receptors for 1,25-dihydroxyvitamin D3: in vitro translation to characterize size and hormone-dependent regulation. Proc Natl Acad Sci USA 84(2):354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuyama H, MacDonald PN (1998) Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J Cell Biochem 71(3):429–440

    Article  CAS  PubMed  Google Scholar 

  • McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O’Malley BW (1987) Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235(4793):1214–1217

    Article  CAS  PubMed  Google Scholar 

  • McKenna MJ (1992) Differences in vitamin D status between countries in young adults and the elderly. Am J Med 93(1):69–77

    Article  CAS  PubMed  Google Scholar 

  • Merke J, Nawrot M, Hugel U, Szabo A, Ritz E (1989) Evidence for in vivo upregulation of 1,25(OH)2 vitamin D3 receptor in human monocytes. Calcif Tissue Int 45(4):255–256

    Article  CAS  PubMed  Google Scholar 

  • von Mikecz A (2006) The nuclear ubiquitin-proteasome system. J Cell Sci 119(Pt 10):1977–1984

    Article  CAS  Google Scholar 

  • Mora JR, Iwata M, von Andrian UH (2008) Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2(12):933–944

    Article  CAS  PubMed  Google Scholar 

  • Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26(5):662–687

    Article  CAS  PubMed  Google Scholar 

  • Najarro K, Nguyen H, Chen G, Xu M, Alcorta S, Yao X, Zukley L, Metter EJ, Truong T, Lin Y, Li H, Oelke M, Xu X, Ling SM, Longo DL, Schneck J, Leng S, Ferrucci L, Weng NP (2015) Telomere length as an indicator of the robustness of B- and T-cell response to influenza in older adults. J Infect Dis 212(8):1261–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nnoaham KE, Clarke A (2008) Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int J Epidemiol 37(1):113–119

    Article  PubMed  Google Scholar 

  • Palmer MT, Lee YK, Maynard CL, Oliver JR, Bikle DD, Jetten AM, Weaver CT (2011) Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J Biol Chem 286(2):997–1004

    Article  CAS  PubMed  Google Scholar 

  • Pan LC, Price PA (1987) Ligand-dependent regulation of the 1,25-dihydroxyvitamin D3 receptor in rat osteosarcoma cells. J Biol Chem 262(10):4670–4675

    CAS  PubMed  Google Scholar 

  • Peelen E, Knippenberg S, Muris AH, Thewissen M, Smolders J, Tervaert JW, Hupperts R, Damoiseaux J (2011) Effects of vitamin D on the peripheral adaptive immune system: a review. Autoimmun Rev 10(12):733–743

    Article  CAS  PubMed  Google Scholar 

  • Peleg S, Nguyen CV (2010) The importance of nuclear import in protection of the vitamin D receptor from polyubiquitination and proteasome-mediated degradation. J Cell Biochem 110(4):926–934

    Article  CAS  PubMed  Google Scholar 

  • Penna G, Adorini L (2000) 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164(5):2405–2411

    Article  CAS  PubMed  Google Scholar 

  • Penna G, Amuchastegui S, Giarratana N, Daniel KC, Vulcano M, Sozzani S, Adorini L (2007) 1,25-dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J Immunol 178(1):145–153

    Article  CAS  PubMed  Google Scholar 

  • Pike JW, Haussler MR (1983) Association of 1,25-dihydroxyvitamin D3 with cultured 3T6 mouse fibroblasts. Cellular uptake and receptor-mediated migration to the nucleus. J Biol Chem 258(14):8554–8560

    CAS  PubMed  Google Scholar 

  • Prietl B, Treiber G, Pieber TR, Amrein K (2013) Vitamin D and immune function. Forum Nutr 5(7):2502–2521

    CAS  Google Scholar 

  • Provvedini DM, Manolagas SC (1989) 1 Alpha,25-dihydroxyvitamin D3 receptor distribution and effects in subpopulations of normal human T lymphocytes. J Clin Endocrinol Metab 68(4):774–779

    Article  CAS  PubMed  Google Scholar 

  • Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC (1983) 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science 221(4616):1181–1183

    Article  CAS  PubMed  Google Scholar 

  • Prufer K, Barsony J (2002) Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol Endocrinol 16(8):1738–1751

    Article  CAS  PubMed  Google Scholar 

  • Prufer K, Racz A, Lin GC, Barsony J (2000) Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors. J Biol Chem 275(52):41114–41123

    Article  CAS  PubMed  Google Scholar 

  • Rejnmark L, Avenell A, Masud T, Anderson F, Meyer HE, Sanders KM, Salovaara K, Cooper C, Smith HE, Jacobs ET, Torgerson D, Jackson RD, Manson JE, Brixen K, Mosekilde L, Robbins JA, Francis RM, Abrahamsen B (2012) Vitamin D with calcium reduces mortality: patient level pooled analysis of 70,528 patients from eight major vitamin D trials. J Clin Endocrinol Metab 97(8):2670–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards JB, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, Lu X, Surdulescu GL, Swaminathan R, Spector TD, Aviv A (2007) Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr 86(5):1420–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D (2000) The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 5(1):173–179

    Article  CAS  PubMed  Google Scholar 

  • Rowling MJ, Kemmis CM, Taffany DA, Welsh J (2006) Megalin-mediated endocytosis of vitamin D binding protein correlates with 25-hydroxycholecalciferol actions in human mammary cells. J Nutr 136(11):2754–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiso-Mere D, Sone T, Hilliard GM, Pike JW, McDonnell DP (1993) Positive regulation of the vitamin D receptor by its cognate ligand in heterologous expression systems. Mol Endocrinol 7(7):833–839

    CAS  PubMed  Google Scholar 

  • Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96

    Article  CAS  PubMed  Google Scholar 

  • Simpson S Jr, Taylor B, Blizzard L, Ponsonby AL, Pittas F, Tremlett H, Dwyer T, Gies P, van der Mei I (2010) Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol 68(2):193–203

    CAS  PubMed  Google Scholar 

  • Takeuchi A, Reddy GS, Kobayashi T, Okano T, Park J, Sharma S (1998) Nuclear factor of activated T cells (NFAT) as a molecular target for 1alpha,25-dihydroxyvitamin D3-mediated effects. J Immunol 160(1):209–218

    CAS  PubMed  Google Scholar 

  • Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S (1997) 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science 277(5333):1827–1830

    Article  CAS  PubMed  Google Scholar 

  • Thien R, Baier K, Pietschmann P, Peterlik M, Willheim M (2005) Interactions of 1 alpha,25-dihydroxyvitamin D3 with IL-12 and IL-4 on cytokine expression of human T lymphocytes. J Allergy Clin Immunol 116(3):683–689

    Article  CAS  PubMed  Google Scholar 

  • Tiosano D, Wildbaum G, Gepstein V, Verbitsky O, Weisman Y, Karin N, Eztioni A (2013) The role of vitamin D receptor in innate and adaptive immunity: a study in hereditary vitamin D-resistant rickets patients. J Clin Endocrinol Metab 98(4):1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Urry Z, Chambers ES, Xystrakis E, Dimeloe S, Richards DF, Gabrysova L, Christensen J, Gupta A, Saglani S, Bush A, O’Garra A, Brown Z, Hawrylowicz CM (2012) The role of 1alpha,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur J Immunol 42(10):2697–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Bemd GC, Pols HA, Birkenhager JC, van Leeuwen JP (1996) Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA 93(20):10685–10690

    Article  PubMed  PubMed Central  Google Scholar 

  • van Etten E, Mathieu C (2005) Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol 97(1–2):93–101

    Article  PubMed  CAS  Google Scholar 

  • van Halteren AG, van Etten E, De Jong EC, Bouillon R, Roep BO, Mathieu C (2002) Redirection of human autoreactive T-cells Upon interaction with dendritic cells modulated by TX527, an analog of 1,25 dihydroxyvitamin D(3). Diabetes 51(7):2119–2125

    Article  PubMed  Google Scholar 

  • von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C (2010) Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol 11(4):344–349

    Article  CAS  Google Scholar 

  • Wacker M, Holick MF (2013) Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Forum Nutr 5(1):111–148

    CAS  Google Scholar 

  • Walters MR, Rosen DM, Norman AW, Luben RA (1982) 1,25-dihydroxyvitamin D receptors in an established bone cell line. Correlation with biochemical responses. J Biol Chem 257(13):7481–7484

    CAS  PubMed  Google Scholar 

  • Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912

    Article  CAS  PubMed  Google Scholar 

  • White JH (2012) Vitamin D metabolism and signaling in the immune system. Rev Endocr Metab Disord 13(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Wiese RJ, Uhland-Smith A, Ross TK, Prahl JM, DeLuca HF (1992) Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J Biol Chem 267(28):20082–20086

    CAS  PubMed  Google Scholar 

  • Yu XP, Hustmyer FG, Garvey WT, Manolagas SC (1991a) Demonstration of a 1,25-dihydroxyvitamin D3-responsive protein in human lymphocytes: immunologic crossreactivity and inverse regulation with the vitamin D receptor. Proc Natl Acad Sci USA 88(19):8347–8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XP, Mocharla H, Hustmyer FG, Manolagas SC (1991b) Vitamin D receptor expression in human lymphocytes. Signal requirements and characterization by western blots and DNA sequencing. J Biol Chem 266(12):7588–7595

    CAS  PubMed  Google Scholar 

  • Zella LA, Kim S, Shevde NK, Pike JW (2006) Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol 20(6):1231–1247

    Article  CAS  PubMed  Google Scholar 

  • Zella LA, Meyer MB, Nerenz RD, Lee SM, Martowicz ML, Pike JW (2010) Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription. Mol Endocrinol 24(1):128–147

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Guo D, Li K, Pedersen-White J, Stallmann-Jorgensen IS, Huang Y, Parikh S, Liu K, Dong Y (2012) Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int J Obes (Lond) 36(6):805–809

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Geisler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kongsbak-Wismann, M., Rode, A.K.O., Hansen, M.M., Bonefeld, C.M., Geisler, C. (2018). Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_110-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics