Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Link Analytics in Graphs

  • Peixiang Zhao
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_320-1



Link analytics is a set of specialized data analysis and graph mining techniques that discover, examine, and evaluate the relationships or interlinked structures of graphs.


Graph-structured data are ubiquitous (Aggarwal and Wang 2010; Cook and Holder 2006), which consist of vertices (or nodes) representing physical, technological, conceptual, and societal entities or objects and edges (or links) illustrating connections, relationships, or dependencies between vertices in application-specific ways. Noteworthy examples of graphs and networked data include the World Wide Web, where webpages are vertices and hyperlinks are edges (Kleinberg et al. 1999), and social networks, where individuals are vertices and friendship relations are edges (Pitas 2015). In response to the growing popularity and wide applicability of graphs, a proliferation of link analysis techniques has emerged, focusing primarily on the modeling, quantification,...

This is a preview of subscription content, log in to check access.


  1. Aggarwal CC, Wang H (2010) Managing and mining graph data, 1st edn. Springer Publishing Company, Inc., BostonGoogle Scholar
  2. Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic blockmodels. J Mach Learn Res 9:1981–2014Google Scholar
  3. Andersen R, Chung F, Lang K (2006) Local graph partitioning using pagerank vectors. In: Proceedings of the 47th annual IEEE symposium on foundations of computer science (FOCS’06), pp 475–486Google Scholar
  4. Antonellis I, Molina HG, Chang CC (2008) Simrank++: query rewriting through link analysis of the click graph. Proc VLDB Endow 1(1):408–421CrossRefGoogle Scholar
  5. Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM international conference on web search and data mining (WSDM’11), pp 635–644Google Scholar
  6. Bahmani B, Chowdhury A, Goel A (2010) Fast incremental and personalized pagerank. Proc VLDB Endow 4(3):173–184CrossRefGoogle Scholar
  7. Barbieri N, Bonchi F, Manco G (2014) Who to follow and why: link prediction with explanations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’14), pp 1266–1275Google Scholar
  8. Berkhin P (2005) Survey: a survey on pagerank computing. Internet Math 2(1):73–120MathSciNetCrossRefGoogle Scholar
  9. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. In: Proceedings of the seventh international conference on World Wide Web (WWW’98), pp 107–117CrossRefGoogle Scholar
  10. Chebolu P, Melsted P (2008) Pagerank and the random surfer model. In: Proceedings of the nineteenth annual ACM-SIAM symposium on discrete algorithms (SODA’08)Google Scholar
  11. Cook DJ, Holder LB (2006) Mining graph data. Wiley, New YorkGoogle Scholar
  12. Ding C, He X, Husbands P, Zha H, Simon HD (2002) Pagerank, hits and a unified framework for link analysis. In: Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR’02), pp 353–354Google Scholar
  13. Duan L, Aggarwal C, Ma S, Hu R, Huai J (2016) Scaling up link prediction with ensembles. In: Proceedings of the ninth ACM international conference on web search and data mining (WSDM’16), pp 367–376Google Scholar
  14. Fogaras D, Rácz B, Csalogány K, Sarlós T (2005) Towards scaling fully personalized pagerank: algorithms, lower bounds, and experiments. Internet Math 2(3):333–358MathSciNetCrossRefGoogle Scholar
  15. Fujiwara Y, Nakatsuji M, Shiokawa H, Mishima T, Onizuka M (2013) Efficient ad-hoc search for personalized pagerank. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data (SIGMOD’13), pp 445–456Google Scholar
  16. Gupta P, Goel A, Lin J, Sharma A, Wang D, Zadeh R (2013) WTF: The who to follow service at twitter. In: Proceedings of the 22nd international conference on World Wide Web (WWW’13), pp 505–514Google Scholar
  17. Hasan M, Zaki M (2011) A survey of link prediction in social networks. In: Aggarwal CC (ed) Social network data analytics. Springer, New York, pp 243–275CrossRefGoogle Scholar
  18. Jeh G, Widom J (2002) Simrank: a measure of structural-context similarity. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining (KDD’02), pp 538–543Google Scholar
  19. Jeh G, Widom J (2003) Scaling personalized web search. In: Proceedings of the 12th international conference on World Wide Web (WWW’03), pp 271–279Google Scholar
  20. Jiang M, Fu AWC, Wong RCW (2017) Reads: a random walk approach for efficient and accurate dynamic simrank. Proc VLDB Endow 10(9):937–948CrossRefGoogle Scholar
  21. Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604–632MathSciNetCrossRefGoogle Scholar
  22. Kleinberg JM, Kumar R, Raghavan P, Rajagopalan S, Tomkins AS (1999) The web as a graph: measurements, models, and methods. In: Proceedings of the 5th annual international conference on computing and combinatorics (COCOON’99), pp 1–17Google Scholar
  23. Liben-Nowell D, Kleinberg J (2003) The link prediction problem for social networks. In: Proceedings of the twelfth international conference on information and knowledge management (CIKM’03), pp 556–559Google Scholar
  24. Liu Q, Xiang B, Yuan NJ, Chen E, Xiong H, Zheng Y, Yang Y (2017) An influence propagation view of pagerank. ACM Trans Knowl Discov Data 11(3):30: 1–30:30Google Scholar
  25. Lizorkin D, Velikhov P, Grinev M, Turdakov D (2008) Accuracy estimate and optimization techniques for simrank computation. Proc VLDB Endow 1(1): 422–433CrossRefGoogle Scholar
  26. Lofgren PA, Banerjee S, Goel A, Seshadhri C (2014) FAST-PPR: scaling personalized pagerank estimation for large graphs. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’14), pp 1436–1445Google Scholar
  27. Maehara T, Akiba T, Iwata Y, Kawarabayashi Ki (2014) Computing personalized pagerank quickly by exploiting graph structures. Proc VLDB Endow 7(12): 1023–1034CrossRefGoogle Scholar
  28. Martínez V, Berzal F, Cubero JC (2016) A survey of link prediction in complex networks. ACM Comput Surv 49(4):69:1–69:33CrossRefGoogle Scholar
  29. Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proceedings of the 18th international conference on data engineering (ICDE’02), pp 117–128Google Scholar
  30. Page L, Brin S, Motwani R, Winograd T (1998) The pagerank citation ranking: bringing order to the web. In: Proceedings of the 7th international World Wide Web conference (WWW’98), pp 161–172Google Scholar
  31. Pitas I (2015) Graph-based social media analysis. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  32. Tian B, Xiao X (2016) Sling: A near-optimal index structure for simrank. In: Proceedings of the 2016 international conference on management of data (SIGMOD’16), pp 1859–1874Google Scholar
  33. Wang S, Tang Y, Xiao X, Yang Y, Li Z (2016) Hubppr: effective indexing for approximate personalized pagerank. Proc VLDB Endow 10(3):205–216CrossRefGoogle Scholar
  34. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393(6684):440–442CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceFlorida State UniversityTallahasseeUSA

Section editors and affiliations

  • Hannes Voigt
    • 1
  • George Fletcher
    • 2
  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of Technology