Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Query Processing – kNN

  • Jianzhong Qi
  • Rui Zhang
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_220-1

Synonyms

Definitions

Consider a set of n data objects O = { o 1, o 2, …, o n} and a query object (user) q. Each object including the query object is associated with a d-dimensional vector representing its coordinate in a d-dimensional space ( \(d \in \mathbb {N_+}\)
This is a preview of subscription content, log in to check access.

References

  1. Aji A, Wang F, Saltz JH (2012) Towards building a high performance spatial query system for large scale medical imaging data. In: Proceedings of the 20th international conference on advances in geographic information systems (SIGSPATIAL), pp 309–318Google Scholar
  2. Aly AM, Mahmood AR, Hassan MS, Aref WG, Ouzzani M, Elmeleegy H, Qadah T (2015) Aqwa: adaptive query workload aware partitioning of big spatial data. Proc VLDB Endow 8(13):2062–2073CrossRefGoogle Scholar
  3. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517CrossRefzbMATHGoogle Scholar
  4. Cahsai A, Ntarmos N, Anagnostopoulos C, Triantafillou P (2017) Scaling k-nearest neighbours queries (the right way). In: 2017 IEEE 37th international conference on distributed computing systems (ICDCS), pp 1419–1430Google Scholar
  5. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113CrossRefGoogle Scholar
  6. Eldawy A, Mokbel MF (2013) A demonstration of spatialhadoop: an efficient mapreduce framework for spatial data. Proc VLDB Endow 6(12):1230–1233CrossRefGoogle Scholar
  7. Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta Informatica 4(1):1–9CrossRefzbMATHGoogle Scholar
  8. Ghemawat S, Gobioff H, Leung ST (2003) The google file system. In: Proceedings of the nineteenth ACM symposium on operating systems principles (SOSP), pp 29–43Google Scholar
  9. Gu Y, Liu G, Qi J, Xu H, Yu G, Zhang R (2016) The moving K diversified nearest neighbor query. IEEE Trans Knowl Data Eng 28(10):2778–2792CrossRefGoogle Scholar
  10. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data (SIGMOD), pp 47–57Google Scholar
  11. Han D, Stroulia E (2013) Hgrid: a data model for large geospatial data sets in hbase. In: 2013 IEEE 6th international conference on cloud computing (CLOUD), pp 910–917Google Scholar
  12. Hjaltason GR, Samet H (1995) Ranking in spatial databases. In: Proceedings of the 4th international symposium on advances in spatial databases (SSD), pp 83–95Google Scholar
  13. Hsu YT, Pan YC, Wei LY, Peng WC, Lee WC (2012) Key formulation schemes for spatial index in cloud data managements. In: 2012 IEEE 13th international conference on mobile data management (MDM), pp 21–26Google Scholar
  14. Jagadish HV, Ooi BC, Tan KL, Yu C, Zhang R (2005) idistance: an adaptive b+-tree based indexing method for nearest neighbor search. ACM Trans Database Syst 30(2):364–397CrossRefGoogle Scholar
  15. Koudas N, Ooi BC, Tan KL, Zhang R (2004) Approximate nn queries on streams with guaranteed error/performance bounds. In: Proceedings of the thirtieth international conference on very large data bases (VLDB), vol 30, pp 804–815Google Scholar
  16. Lawder JK, King PJH (2001) Querying multi-dimensional data indexed using the hilbert space-filling curve. SIGMOD Rec 30(1):19–24CrossRefGoogle Scholar
  17. Leutenegger ST, Lopez MA, Edgington J (1997) Str: a simple and efficient algorithm for r-tree packing. In: Proceedings 13th international conference on data engineering (ICDE), pp 497–506Google Scholar
  18. Li C, Gu Y, Qi J, Yu G, Zhang R, Yi W (2014) Processing moving kNN queries using influential neighbor sets. Proc VLDB Endow 8(2):113–124CrossRefGoogle Scholar
  19. Li C, Gu Y, Qi J, Yu G, Zhang R, Deng Q (2016) INSQ: an influential neighbor set based moving kNN query processing system. In: Proceedings of the 32nd IEEE international conference on data engineering (ICDE), pp 1338–1341Google Scholar
  20. Nishimura S, Das S, Agrawal D, Abbadi AE (2011) Md-hbase: a scalable multi-dimensional data infrastructure for location aware services. In: Proceedings of the 2011 IEEE 12th international conference on mobile data management (MDM), vol 01, pp 7–16Google Scholar
  21. Nutanong S, Zhang R, Tanin E, Kulik L (2008) The v*-diagram: a query-dependent approach to moving kNN queries. Proc VLDB Endow 1(1):1095–1106CrossRefGoogle Scholar
  22. Orenstein JA, Merrett TH (1984) A class of data structures for associative searching. In: Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on principles of database systems (PODS), pp 181–190Google Scholar
  23. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In: Proceedings of the 1995 ACM SIGMOD international conference on management of data (SIGMOD), pp 71–79Google Scholar
  24. Sellis TK, Roussopoulos N, Faloutsos C (1987) The r+-tree: a dynamic index for multi-dimensional objects. In: Proceedings of the 13th international conference on very large data bases (VLDB), pp 507–518Google Scholar
  25. Wang Y, Zhang R, Xu C, Qi J, Gu Y, Yu G (2014) Continuous visible k nearest neighbor query on moving objects. Inf Syst 44:1–21CrossRefGoogle Scholar
  26. Xie D, Li F, Yao B, Li G, Zhou L, Guo M (2016) Simba: efficient in-memory spatial analytics. In: Proceedings of the 2016 SIGMOD international conference on management of data (SIGMOD), pp 1071–1085Google Scholar
  27. Yu J, Wu J, Sarwat M (2015) Geospark: a cluster computing framework for processing large-scale spatial data. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems (SIGSPATIAL), pp 70:1–70:4Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.The University of MelbourneMelbourneAustralia

Section editors and affiliations

  • Timos Sellis
    • 1
  • Aamir Cheema
    • 1
  1. 1.Data Science Research InstituteSwinburne University of TechnologyMelbourneAustralia