Skip to main content

Weaker Consistency Models/Eventual Consistency

  • Living reference work entry
  • First Online:
Encyclopedia of Big Data Technologies
  • 661 Accesses

Definitions

Weaker consistency and eventual consistency models are classes of consistency in data management systems that trade off consistency for performance.

Overview

Data management systems have employed replication and distribution of data for many objectives, including fault tolerance, load balancing, and read availability, among others (Kemme et al. 2010; Bernstein and Goodman 1981). Having data be distributed or replicated on various nodes raises a problem of how to coordinate access to data across all nodes. Specifically, a client accessing data may affect the state of multiple nodes concurrently. With simultaneous access from different clients, the distributed state of the data may be inconsistent due to overwrites, race conditions, and other concurrency anomalies. Distributed and replicated data management systems are more susceptible to such problems compared to parallel data management systems because the communication delay between nodes is orders of magnitude larger...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahamad M, Neiger G, Kohli P, Burns J, Hutto P, Anderson T (1990) Causal memory: definitions, implementation and programming. IEEE Trans Parallel Distrib Syst 1:6–16

    Google Scholar 

  • Ardekani MS, Sutra P, Preguiça N, Shapiro M (2013) Non-monotonic snapshot isolation. arXiv preprint arXiv:13063906

    Google Scholar 

  • Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Queue 11(3):20:20–20:32. http://doi.acm.org/10.1145/2460276.2462076

  • Bailis P, Venkataraman S, Franklin MJ, Hellerstein JM, Stoica I (2012) Probabilistically bounded staleness for practical partial quorums. Proc VLDB Endow 5(8):776–787

    Google Scholar 

  • Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data, SIGMOD’13. ACM, New York, pp 761–772. http://doi.acm.org/10.1145/2463676.2465279

  • Berenson H, Bernstein P, Gray J, Melton J, O’Neil E, O’Neil P (1995) A critique of ansi SQL isolation levels. pp 1–10. http://doi.acm.org/10.1145/223784.223785

  • Bernstein PA, Goodman N (1981) Concurrency control in distributed database systems. ACM Comput Surv (CSUR) 13(2):185–221

    Google Scholar 

  • Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency control and recovery in database systems. Addison-Wesley, Reading

    Google Scholar 

  • Brewer EA (2000) Towards robust distributed systems (abstract). In: Proceedings of the nineteenth annual ACM symposium on principles of distributed computing, PODC’00. ACM, New York, pp 7–. http://doi.acm.org/10.1145/343477.343502

  • Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen HA, Puz N, Weaver D, Yerneni R (2008) Pnuts: Yahoo!’s hosted data serving platform. Proc VLDB Endow 1(2):1277–1288. https://doi.org/10.14778/1454159.1454167

  • Daudjee K, Salem K (2006) Lazy database replication with snapshot isolation. In: Proceedings of the 32nd international conference on very large data bases, VLDB Endowment, VLDB’06, pp 715–726. http://dl.acm.org/citation.cfm?id=1182635.1164189

  • DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly available key-value store. In: Proceedings of twenty-first ACM SIGOPS symposium on operating systems principles, SOSP’07. ACM, New York, pp 205–220. http://doi.acm.org/10.1145/1294261.1294281

  • Du J, Elnikety S, Roy A, Zwaenepoel W (2013a) Orbe: scalable causal consistency using dependency matrices and physical clocks. In: Proceedings of the 4th annual symposium on cloud computing, SOCC’13. ACM, New York, pp 11:1–11:14. http://doi.acm.org/10.1145/2523616.2523628

  • Du J, Elnikety S, Zwaenepoel W (2013b) Clock-si: snapshot isolation for partitioned data stores using loosely synchronized clocks. In: Proceedings of the 2013 IEEE 32nd international symposium on reliable distributed systems, SRDS’13. IEEE Computer Society, Washington, pp 173–184. https://doi.org/10.1109/SRDS.2013.26

  • Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2):51–59. http://doi.acm.org/10.1145/564585.564601

  • Helland P, Campbell D (2009) Building on quicksand. arXiv preprint arXiv:09091788

    Google Scholar 

  • Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans Program Lang Syst 12(3):463–492. http://doi.acm.org/10.1145/78969.78972

  • Kemme B, Jimenez-Peris R, Patino-Martinez M (2010) Database replication. Synth Lect Data Manage 2(1):1–153. http://www.morganclaypool.com/doi/abs/10.2200/S00296ED1V01Y201008DTM007

  • Kraska T, Pang G, Franklin MJ, Madden S, Fekete A (2013) Mdcc: multi-data center consistency. In: Proceedings of the 8th ACM European conference on computer systems, EuroSys’13. ACM, New York, pp 113–126. http://doi.acm.org/10.1145/2465351.2465363

  • Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. SIGOPS Oper Syst Rev 44(2):35–40. http://doi.acm.org/10.1145/1773912.1773922

  • Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM 21(7):558–565. http://doi.acm.org/10.1145/359545.359563

  • Lin Y, Kemme B, Patiño Martínez M, Jiménez-Peris R (2005) Middleware based data replication providing snapshot isolation. In: Proceedings of the 2005 ACM SIGMOD international conference on management of data, SIGMOD’05. ACM, New York, pp 419–430. http://doi.acm.org/10.1145/1066157.1066205

  • Lin Y, Kemme B, Patino-Martinez M, Jimenez-Peris R (2007) Enhancing edge computing with database replication. In: Proceedings of the 26th IEEE international symposium on reliable distributed systems, SRDS’07. IEEE Computer Society, Washington, pp 45–54. http://dl.acm.org/citation.cfm?id=1308172.1308219

  • Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2011) Don’t settle for eventual: scalable causal consistency for wide-area storage with cops. In: Proceedings of the twenty-third ACM symposium on operating systems principles, SOSP’11. ACM, New York, pp 401–416. http://doi.acm.org/10.1145/2043556.2043593

  • Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2013) Stronger semantics for low-latency geo-replicated storage. In: Proceedings of the 10th USENIX conference on networked systems design and implementation, NSDI’13. USENIX Association, Berkeley, pp 313–328. http://dl.acm.org/citation.cfm?id=2482626.2482657

  • Mattern F et al (1989) Virtual time and global states of distributed systems. Parallel Distrib Algoritm 1(23): 215–226

    Google Scholar 

  • Nawab F, Arora V, Agrawal D, El Abbadi A (2015) Chariots: a scalable shared log for data management in multi-datacenter cloud environments. In: Proceedings of the 18th international conference on extending database technology, EDBT 2015, Brussels, pp 13–24, 23–27 Mar 2015. https://doi.org/10.5441/002/edbt.2015.03

  • Pang G, Kraska T, Franklin MJ, Fekete A (2014) Planet: making progress with commit processing in unpredictable environments. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data, SIGMOD’14. ACM, New York, pp 3–14. http://doi.acm.org/10.1145/2588555.2588558

  • Raynal M, Thia-Kime G, Ahamad M (1996) From serializable to causal transactions. In: Proceedings of the fifteenth annual ACM symposium on principles of distributed computing. ACM, p 310

    Google Scholar 

  • Shapiro M, Preguiça N, Baquero C, Zawirski M (2011) Convergent and commutative replicated data types. Bull Eur Assoc Theor Comput Sci (104):67–88

    MathSciNet  MATH  Google Scholar 

  • Sovran Y, Power R, Aguilera MK, Li J (2011) Transactional storage for geo-replicated systems. In: Proceedings of the twenty-third ACM symposium on operating systems principles, SOSP’11. ACM, New York, pp 385–400. http://doi.acm.org/10.1145/2043556.2043592

    Chapter  Google Scholar 

  • Terry DB, Demers AJ, Petersen K, Spreitzer MJ, Theimer MM, Welch BB (1994) Session guarantees for weakly consistent replicated data. In: Proceedings of the third international conference on parallel and distributed information systems. IEEE, pp 140–149

    Google Scholar 

  • Thomas RH (1979) A majority consensus approach to concurrency control for multiple copy databases. ACM Trans Database Syst (TODS) 4(2):180–209

    Article  MathSciNet  Google Scholar 

  • Zhang I, Sharma NK, Szekeres A, Krishnamurthy A, Ports DRK (2015) Building consistent transactions with inconsistent replication. In: Proceedings of the 25th symposium on operating systems principles, SOSP’15. ACM, New York, pp 263–278. http://doi.acm.org/10.1145/2815400.2815404

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Nawab .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nawab, F. (2018). Weaker Consistency Models/Eventual Consistency. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_181-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63962-8_181-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63962-8

  • Online ISBN: 978-3-319-63962-8

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics