Skip to main content

Developments in Clinical MEG and Its Combination with Navigated TMS

  • Living reference work entry
  • First Online:
Book cover Magnetoencephalography
  • 248 Accesses

Abstract

Development of clinical MEG will provide biomarkers of neurodegenerative and developmental disorders by producing functional and effective connectivity measures within and between distinct functional brain areas. It is highly probable that neurodegenerative disorders damage these connections early in their course and detection of such changes will be feasible with sophisticated signal analysis of MEG data. Combining MEG and navigated transcranial magnetic stimulation (nTMS) has already proven to be valuable in clinical evaluations. Such combinations will assist us in understanding the complex brain networks and the effective connectivity within them both in the healthy and diseased brains. This chapter reviews developments in clinical MEG research and estimates potential added value by nTMS studies in clarifying pathophysiology of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Airaksinen K, Butorina A, Pekkonen E, Nurminen J, Taulu S, Ahonen A, Schnitzler A, Mäkelä JP (2012) Somatomotor mu rhythm amplitude correlates with rigidity during deep brain stimulation in Parkinsonian patients. Clin Neurophysiol 123:2010–2017

    Google Scholar 

  • Allen CPG, Dunkley BT, Muthukumaraswamy SD, Edden R, Evans CJ, Sumner P, Singh KD, Chambers CD (2014) Enhanced awareness followed reversible inhibition of human visual cortex: a combined TMS, MRS and MEG study. PLoS One 9(6):e100350

    Google Scholar 

  • Barth DS, Sutherling W, Engel J Jr, Beatty J (1982) Neuromagnetic localization of epileptiform spike activity in the human brain. Science 218:891–894

    Google Scholar 

  • Brier MR, Thomas JB, Snyder AZ, Benzinger TL, Zhang D, Raichle ME, Holltzman DM Morris JC, Ances BM (2012) Loss of intranetwork and internetwork resting state functional connections with Alzheimer disease progression. J Neurosci 32:8890–8899

    Google Scholar 

  • Delbeuck X, van der Linden M, Collette F (2003) Alzheimer’s disease as disconnection syndrome? Neuropsychol Rev 13:79–91

    Google Scholar 

  • DeTiege X, Carrette E, Legros B, Vonck K, Op de beeck M, Bourguignon M, Massager N, David P, Van Roost D, Meurs A, Lapere S, Deblaere K, Goldman S, Van Bogaert P (2012) Clinical added value of magnetic source imaging in the presurgical evaluation of refractory focal epilepsy. J~Neurol Neurosurg Psychiatry 83:417–423

    Google Scholar 

  • Heller L, van Hulsteyn DB (1992) Brain stimulation using electromagnetic sources: theoretical aspects. Biophys J 63:129–138

    Google Scholar 

  • Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15:884–890

    Google Scholar 

  • Hsu W-Y, Kuo Y-F, Liao K-K, Yu H-Y, Lin Y-Y (2015) Widespread inter-ictal excitability changes in patients with temporal lobe epilepsy: a TMS/MEG study. Epilepsy Res 111:61–71

    Google Scholar 

  • Jha A, Litvak V, Taulu S, Thevathasan V, Hyam JA, Foltynie T, Limousin P, Bogdanovic M, Zrinzo L, Green AL, Aziz TZ, Friston K, Brown P (2017) Functional connectivity of the pedunculopontine nucleus and surrounding region in Parkinson’s disease. Cereb Cortex 27:54–67

    Google Scholar 

  • Jmail N, Gavaret M, Bartolomei F, Chauvel P, Badier J-M, Be’nar C-G (2016) Comparison of brain networks during interictal oscillations and spikes on magnetoencephalography and intracerebral EEG. Brain Topogr 29:752–765

    Google Scholar 

  • Knowlton RC, Radzan SN, Limdi N, Elgavish RA, Killen J, Blount J, Burneo JG, Ver Hoef L, Paige L, Faught E, Kankiratwana P, Bartolocci A, Riley K, Kusniwecky R (2009) Effect of epilepsy magnetic source imaging on intracranial electrode placement. Ann Neurol 65:716–723

    Google Scholar 

  • Koponen LM, Nieminen JO, Ilmoniemi RJ (2018) Multi-locus transcranial magnetic stimulation device with electronic stimulation targeting. Brain Stim 11:849–855

    Google Scholar 

  • Larson E, Taulu S (2017) Reducing sensor noise in MEG and EEG. Recordings using oversampled temporal projection. IEEE Trans Biomed Eng.https://doi.org/10.1109/TBME.2017.2734641

  • Maestu F, Peña JM, Garcés P, Gonzalez S, Bajo R, Bagic A, Cuesta P, Funke M, Mäkelä JP, Menasalvas E, Nakamura A, Parkkonen L, Lopez ME, del Pozo F, Sudre G, Zamrini E, Pekkonen E, Henson R, Becker J (2015) A multicenter study of the early detection of synaptic dysfunction in mild cognitive impairment using magnetoencephalography-derived functional connectivity. Neuroimage Clin 9:103–109

    Google Scholar 

  • Mäkelä JP, Forss N, Jääskeläinen J, Kirveskari E, Korvenoja A, Paetau R (2006) Magnetoencephalography in neurosurgery. Neurosurgery 59:493–510

    Google Scholar 

  • Mäkelä JP, Lioumis P, Laaksonen K, Forss N, Tatlisumak T, Kaste M, Mustanoja S (2015) Cortical excitability measured with nTMS and MEG during stroke recovery. Neural Plast 2015:309546

    Google Scholar 

  • Mäkelä JP, Vitikainen A-M, Lioumis P, Paetau R, Ahtola E, Kuusela L, Valanne L, Blomstedt G, Gaily E (2013) Functional plasticity of the motor cortical structures demonstrated by navigated TMS in two patients with epilepsy. Brain Stimul 6:286–291

    Google Scholar 

  • Medvedovsky M, Taulu S, Gaily E, Metsähonkala E-L, Mäkelä JP, Ekstein D, Kipervasser S, Neufeld MY, Kramer U, Blomstedt G, Fried I, Karppinen A, Veshchev I, Roivainen R, Ben-Zeev B, Goldberg-Stern H, Wilenius J, Paetau R (2012) Sensitivity and specificity of seizure onset zone estimation by ictal MEG. Epilepsia 53:1649–1657

    Google Scholar 

  • Montez T, Poil S-S, Jones BF, Manshanden I, Verbunt JPA, van Dijk P, Brussaard AB, van Ooyen A, Stam CJ, Scheltens P, Linkenkaer-Hansen K (2009) Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. PNAS 106:1614–1619

    Google Scholar 

  • Murakami S, Okada Y (2006) Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol 575(3):925–936

    Google Scholar 

  • Mutanen TP, Kukkonen M, Nieminen JO, Stenroos M, Sarvas J, Ilmoniemi RJ (2016) Recovering TMS-evoked EEG responses masked by muscle artifacts. NeuroImage 139:157–166

    Google Scholar 

  • Nurminen J, Taulu S, Nenonen J, Helle L, Simola J, Ahonen A (2013) Improving MEG performance with additional tangential sensors. IEEE Trans Biomed Eng 60:2559–2566

    Google Scholar 

  • Palva JM, Monto S, Kulashekrar S, Palva S (2010) Neuronal synchrony reveals working memory networks and predicts individual memory capacity. PNAS 107:7580–7585

    Google Scholar 

  • Raij T, Karhu J, Kičić D, Lioumis P, Julkunen P, Lin F-H, Ahveninen J, Ilmoniemi RJ, Mäkelä JP, Hämäläinen M, Rosen BR, Belliveau JW (2008) Parallel sensory input makes the brain run faster. NeuroImage 40:1792–1797

    Google Scholar 

  • Ruohonen JO, Ravazzani P, Ilmoniemi RJ, Galardi G, Nilsson J, Panizza M, Amadio S, Grandori F, Comi G (1996) Motor cortex mapping with combined MEG and magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 46:317–322

    Google Scholar 

  • Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Neurosci 6:285–296

    Google Scholar 

  • Shiner CT, Tang H, Johnson BW, McNulty PA (2015) Cortical beta oscillations and motor thresholds differ across the spectrum of post-stroke motor impairment, a preliminary MEG and TMS study. Brain Res 1629:26–37

    Google Scholar 

  • Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132:213–224

    Google Scholar 

  • Sutherling WW, Mamelak AN, Thyerlei D, Maleeva T, Minazad Y, Philpott L, Lopez N (2008) Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 71:990–996

    Google Scholar 

  • Taulu S, Simola J (2006) Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol 51:1759–1768

    Google Scholar 

  • Taulu S, Simola J, Kajola M, Helle L, Ahonen A, Sarvas J (2012) Suppression of uncorrelated sensor noise and artifacts in multi-channel MEG data. Poster in Biomag 2012, Paris

    Google Scholar 

  • Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J (2011) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21:1176–1185

    Google Scholar 

  • van Klink N, van Rosmalen F, Nenonen J, Burnos S, Helle L, Taulu S, Furlong PL, Zijlmans M, Hillebrand A (2017) Automatic detection and visualisation of MEG ripple oscillations in epilepsy. NeuroImage Clin 15:689–701

    Google Scholar 

  • Vitikainen A-M, Lioumis P, Paetau R, Salli E, Komssi S, Metsähonkala L, Paetau A, Kičić D, Blomstedt G, Valanne L, Mäkelä JP, Gaily E (2009) Combined use of non-invasive techniques for improved functional localization for a selected group of epilepsy surgery candidates. NeuroImage 45:342–348

    Google Scholar 

  • Zamrini E, Maestu F, Funke M, Mäkelä JP, Riley M, Bajo R, Sudre G, Fernandez A, Castellanos NP, Del Pozo F, Stam K, van Dijk B, Bagic A, Pekkonen E, Becker JT (2011) Magnetoencephalography (MEG) as a Putative Biomarker for Alzheimer’s disease. Int J Alzh Dis.https://doi.org/10.4061/2011/280289

  • Zhdanov A, Wilenius J, Paetau A, Ahonen A, Mäkelä JP (2013) Quantifying the contribution of video in combined video-magnetoencephalographic ictal recordings of epilepsy patients. Epilepsy Res 105:405–409

    Google Scholar 

  • Zrenner C, Desideri D, Belardinelli P, Ziemann U (2018) Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stim 11:374–389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Mäkelä .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mäkelä, J.P. (2019). Developments in Clinical MEG and Its Combination with Navigated TMS. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics