Skip to main content

Neuroimaging in Movement Disorders

A Clinical Approach

  • Living reference work entry
  • First Online:
Clinical Neuroradiology

Abstract

Movement disorders can be classified according to the most prevalent impaired movement into hypokinetic and hyperkinetic. Underlying pathology, imaging findings, and the clinical presentation can overlap with dementia: for example, accumulation of Lewy bodies may lead to Parkinson disease (PD) and dementia with Lewy bodies as well as an overlapping clinical syndrome of movement disorder and cognitive decline, while imaging findings are also overlapping. In many cases, structural and functional imaging notably MRI and nuclear medical imaging techniques provide complementary information. Frequently more than one radiological technique is required to establish a diagnosis in clinical neuroradiology.

PD is the most common movement disorder, characterized by loss of dopaminergic uptake in the striatum on nuclear medicine dopaminergic imaging. Recently, the abnormal finding of the nigrosome-1 on susceptibility-weighted imaging (“swallow tail sign”) was demonstrated as useful marker in MRI. Both findings are overlapping between PD and atypical parkinsonian syndromes (APS) including multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). An abnormality of the putamen or cerebellum might orient towards a MSA-P or MSA-C, respectively, while atrophy of the midbrain might point towards a PSP. Glucose metabolism can guide the differential diagnosis between APS. T2 and FLAIR MRI is helpful for the differential diagnosis of vascular parkinsonism.

Numerous other forms of less frequent movement disorders exist including neurodegeneration with brain iron accumulation (NBIA), a heterogeneous and evolving group of several diseases characterized by abnormal iron accumulating in more or less specific patterns visible on susceptibility-weighted MR imaging. Nuclear medical techniques are of little use in the diagnosis of NBIA. Essential tremor, restless legs syndrome, and tics/Tourette’s syndrome have no specific imaging findings. Hereditary/spinocerebellar ataxia (SCA) is associated with a variable degree of cerebellar atrophy on structural imaging. In motor neuron diseases such as amyotrophic lateral sclerosis (ALS) abnormalities along the pyramidal tract and susceptibility of the motor cortex can at times be seen. Huntington is associated with atrophy of caudate nucleus.

This publication is endorsed by European Society of Neuroradiology (www.esnr.org)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

APS:

Atypical parkinsonian syndromes

CBD:

Corticobasal disease

CBS:

Corticobasal syndrome

CTE:

Chronic traumatic encephalopathy

DAT:

Dopamine transporter

DLB:

Dementia with Lewy bodies

FDG:

Fluoro-deoxy-glucose

FTD:

Frontotemporal dementia

HD:

Huntington’s disease

MND:

Motor neuron disease

MSA:

Multisystem atrophy

MSA-c:

MSA cerebellar type

MSA-p:

MSA parkinsonian type

NBIA:

Neurodegeneration with brain iron accumulation

PD:

Parkinson disease

PSP:

Progressive supranuclear palsy

SCA:

Spinocerebellar ataxia

UDPRS:

Unified Parkinson disease rating scale

References

  • Badoud S, Nicastro N, Garibotto V, Burkhard PR, Haller S. Distinct spatiotemporal patterns for disease duration and stage in Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2016a;43:509–16.

    Article  Google Scholar 

  • Badoud S, Van De Ville D, Nicastro N, Garibotto V, Burkhard PR, Haller S. Discriminating among degenerative parkinsonisms using advanced (123)I-ioflupane SPECT analyses. Neuroimage Clin. 2016b;12:234–40.

    Article  Google Scholar 

  • Benamer TS, Patterson J, Grosset DG, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15:503–10.

    Article  CAS  Google Scholar 

  • Bird TD. Hereditary ataxia overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle: University of Washington; 1993–2018.

    Google Scholar 

  • Eckert T, Eidelberg D. Neuroimaging and therapeutics in movement disorders. NeuroRx. 2005;2:361–71.

    Article  Google Scholar 

  • Gupta D, Kuruvilla A. Vascular parkinsonism: what makes it different. Postgrad Med J. 2011;87:829–36.

    Article  Google Scholar 

  • Hellwig S, Amtage F, Kreft A, et al. [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology. 2012;79:1314–22.

    Article  CAS  Google Scholar 

  • Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord. 2015;8:1–13.

    Article  Google Scholar 

  • Klaes A, Reckziegel E, Franca MC, et al. MR imaging in spinocerebellar ataxias: a systematic review. AJNR Am J Neuroradiol. 2016;37:1405–12.

    Article  CAS  Google Scholar 

  • Kruer MC, Boddaert N, Schneider SA, et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol. 2012;33:407–14.

    Article  CAS  Google Scholar 

  • Massey LA, Jäger HR, Paviour DC, et al. The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology. 2013;80:1856–61.

    Article  Google Scholar 

  • Matsuura K, Maeda M, Yata K, et al. Neuromelanin magnetic resonance imaging in Parkinson’s disease and multiple system atrophy. Eur Neurol. 2013;70:70–7.

    Article  CAS  Google Scholar 

  • Meijer FJA, Goraj B, Bloem BR, Esselink RAJ. Clinical application of brain MRI in the diagnostic work-up of parkinsonism. J Parkinsons Dis. 2017;7:211–7.

    Article  Google Scholar 

  • Pagano G, Niccolini F, Politis M. Current status of PET imaging in Huntington’s disease. Eur J Nucl Med Mol Imaging. 2016;43:1171–82.

    Article  CAS  Google Scholar 

  • Pilotto A, Premi E, Paola Caminiti S, et al. Single-subject SPM FDG-PET patterns predict risk of dementia progression in Parkinson disease. Neurology. 2018;90:e1029–37.

    Article  Google Scholar 

  • Quattrone A, Nicoletti G, Messina D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology. 2008;246: 214–21.

    Article  Google Scholar 

  • Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet. 1999;354:1771–5.

    Article  CAS  Google Scholar 

  • Schwarz ST, Abaei M, Gontu V, Morgan PS, Bajaj N, Auer DP. Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: a region-of-interest and voxel-based study at 3T and systematic review with meta-analysis. Neuroimage Clin. 2013;3:481–8.

    Article  Google Scholar 

  • Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP. The ‘swallow tail’ appearance of the healthy nigrosome – a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS One. 2014;9:e93814.

    Article  Google Scholar 

  • Shakkottai VG, Fogel BL. Clinical neurogenetics: autosomal dominant spinocerebellar ataxia. Neurol Clin. 2013;31:987–1007.

    Article  Google Scholar 

  • Südmeyer M, Antke C, Zizek T, et al. Diagnostic accuracy of combined FP-CIT, IBZM, and MIBG scintigraphy in the differential diagnosis of degenerative parkinsonism: a multidimensional statistical approach. J Nucl Med. 2011;52:733–40.

    Article  Google Scholar 

  • Sung YH, Noh Y, Lee J, Kim EY. Drug-induced parkinsonism versus idiopathic Parkinson disease: utility of nigrosome 1 with 3-T imaging. Radiology. 2016;279:849–58.

    Article  Google Scholar 

  • Suwijn SR, van Boheemen CJ, de Haan RJ, Tissingh G, Booij J, de Bie RM. The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain parkinsonism: a systematic review. EJNMMI Res. 2015;5:12.

    Article  Google Scholar 

  • Wu Y, Le W, Jankovic J. Preclinical biomarkers of Parkinson disease. Arch Neurol. 2011;68:22–30.

    PubMed  Google Scholar 

Further Reading

  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  Google Scholar 

  • Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012;8:329–39.

    Article  CAS  Google Scholar 

  • Felicio AC, Chang CV, Godeiro-Junior C, Okoshi MP, Ferraz HB. Hemichorea-hemiballism as the first presentation of type 2 diabetes mellitus. Arq Neuropsiquiatr. 2008;66:249–50.

    Article  Google Scholar 

  • Franciotti R, Delli Pizzi S, Perfetti B, et al. Default mode network links to visual hallucinations: a comparison between Parkinson’s disease and multiple system atrophy. Mov Disord. 2015;30:1237–47.

    Article  Google Scholar 

  • Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.

    Article  Google Scholar 

  • Groschel K, Kastrup A, Litvan I, Schulz JB. Penguins and hummingbirds: midbrain atrophy in progressive supranuclear palsy. Neurology. 2006;66:949–50.

    Article  Google Scholar 

  • Haller S, Badoud S, Nguyen D, Garibotto V, Lovblad KO, Burkhard PR. Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR Am J Neuroradiol. 2012;33:2123–8.

    Article  CAS  Google Scholar 

  • Haller S, Badoud S, Nguyen D, et al. Differentiation between Parkinson disease and other forms of parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results. Eur Radiol. 2013;23:12–9.

    Article  CAS  Google Scholar 

  • Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord. 2015;8(1):1–13. https://doi.org/10.14802/jmd.14034

    Article  Google Scholar 

  • Illingworth MA, Meyer E, Chong WK, et al. PLA2G6-associated neurodegeneration (PLAN): further expansion of the clinical, radiological and mutation spectrum associated with infantile and atypical childhood-onset disease. Mol Genet Metab. 2014;112:183–9.

    Article  CAS  Google Scholar 

  • Kamagata K, Hatano T, Okuzumi A, et al. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease. Eur Radiol. 2016;26:2567–77.

    Article  Google Scholar 

  • Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012a;2:a008888.

    Article  Google Scholar 

  • Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888. https://doi.org/10.1101/cshperspect.a008888.

    Article  Google Scholar 

  • Mainta IC, Tabouret-Viaud C, Horvath J, Vargas MI, Garibotto V. Severe early basal ganglia hypometabolism in neurodegeneration with brain iron accumulation. Eur J Nucl Med Mol Imaging. 2016;43:1741–2.

    Article  Google Scholar 

  • Nicastro N, Garibotto V, Burkhard PR. 123I-FP-CIT SPECT accurately distinguishes parkinsonian from cerebellar variant of multiple system atrophy. Clin Nucl Med. 2018;43:e33–6.

    Article  Google Scholar 

  • Ofori E, Pasternak O, Planetta PJ, et al. Longitudinal changes in free-water within the substantia nigra of Parkinson’s disease. Brain. 2015;138:2322–31.

    Article  Google Scholar 

  • Planetta PJ, Ofori E, Pasternak O, et al. Free-water imaging in Parkinson’s disease and atypical parkinsonism. Brain. 2016;139:495–508.

    Article  Google Scholar 

  • Reiter E, Mueller C, Pinter B, et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord. 2015;30:1068–76.

    Article  CAS  Google Scholar 

  • Rizzo G, Tonon C, Manners D, Testa C, Lodi R. Imaging brain functional and metabolic changes in restless legs syndrome. Curr Neurol Neurosci Rep. 2013;13:372.

    Article  Google Scholar 

  • Schwarz ST, Xing Y, Tomar P, Bajaj N, Auer DP. In vivo assessment of brainstem depigmentation in Parkinson disease: potential as a severity marker for multicenter studies. Radiology. 2017a;283:789–98.

    Article  Google Scholar 

  • Schwarz ST, Xing Y, Naidu S, et al. Protocol of a single group prospective observational study on the diagnostic value of 3T susceptibility weighted MRI of nigrosome-1 in patients with parkinsonian symptoms: the N3. BMJ Open. 2017b;7:e016904.

    Article  Google Scholar 

  • Sha SJ, Ghosh PM, Lee SE, et al. Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. Alzheimers Res Ther. 2015;7:8.

    Article  Google Scholar 

  • Sharifi S, Nederveen AJ, Booij J, van Rootselaar AF. Neuroimaging essentials in essential tremor: a systematic review. Neuroimage Clin. 2014;5:217–31.

    Article  Google Scholar 

  • Szewczyk-Krolikowski K, Menke RA, Rolinski M, et al. Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology. 2014;83:208–14.

    Article  Google Scholar 

  • Wu Y, Le W, Jankovic J. Preclinical biomarkers of Parkinson disease. Arch Neurol. 2011;68(1):22–30. https://doi.org/10.1001/archneurol.2010.321.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Haller .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haller, S., Garibotto, V., Schwarz, S. (2018). Neuroimaging in Movement Disorders. In: Barkhof, F., Jager, R., Thurnher, M., Rovira Cañellas, A. (eds) Clinical Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-319-61423-6_65-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61423-6_65-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61423-6

  • Online ISBN: 978-3-319-61423-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics