Skip to main content

Microbial Communities in Oil Sands Tailings: Their Implications in Biogeochemical Processes and Tailings Management

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Bitumen extraction from surface-mined oil sands ores at a gigantic scale produces enormous volumes of fluid fine tailings (FFT) as a waste that are deposited in oil sands tailings ponds (OSTP). Increasing footprint of OSTP and related environmental consequences have drawn public scrutiny and warrant effective management of FFT. OSTP harbor diverse microbial communities that drive many biogeochemical processes in OSTP. In this chapter, we describe the microbial pathways of methanogenesis, and sulfur, nitrogen, and iron transformations in tailings that mitigate toxicity of organic constituents through biodegradation, accelerate consolidation of FFT, and regulate greenhouse gas emissions from OSTP. These microbial processes can also affect FFT reclamation under end-pit-lake (wet) scenario. Understanding microbial and geochemical composition of tailings will help design better strategies for utilizing tailings products for upland (dry) reclamation as well.

This is a preview of subscription content, log in via an institution.

References

  • Abu Laban N, Dao A, Foght J (2015) DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. FEMS Microbiol Ecol 91:fiv039

    Google Scholar 

  • Allen EW (2008) Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. J Environ Eng Sci 7:123–138

    Article  CAS  Google Scholar 

  • Amos RT, Bekins BA, Cozzarelli IM et al (2012) Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. Geobiology 10:506–517

    Article  CAS  PubMed  Google Scholar 

  • An D, Caffrey SM, Soh J et al (2013a) Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ Sci Technol 47:10708–10717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An D, Brown D, Chatterjee I et al (2013b) Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond. Genome 56:612–618

    Article  CAS  PubMed  Google Scholar 

  • Arkell N, Kuznetsov P, Kuznetsova A et al (2015) Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings. J Environ Qual 44:145–153

    Article  PubMed  CAS  Google Scholar 

  • Barrow MP, Witt M, Headley JV, Peru KM (2010) Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization Fourier Transform Ion Cyclotron resonance mass spectrometry. Anal Chem 82:3727–3735

    Article  CAS  PubMed  Google Scholar 

  • Bekins BA, Cozzarelli IM, Erickson ML, Steenson RA, Thorn KA (2016) Crude oil metabolites in groundwater at two spill sites. Groundwater 54:681–691

    Article  CAS  Google Scholar 

  • BGC Engineering Inc (2010) Oil sands tailings technology review. Oil Sands Research and Information Network UoA, Edmonton, AB, OSRIN Report No. TR-1, pp 136

    Google Scholar 

  • Boll M, Heider J (2010) Anaerobic degradation of hydrocarbons: mechanisms of C-H-bond activation in the absence of oxygen. In: Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1011–1024

    Chapter  Google Scholar 

  • Bond DR, Lovley DR (2002) Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4:115–124

    Article  CAS  PubMed  Google Scholar 

  • Bordenave S, Kostenko V, Dutkoski M et al (2010) Relation between the activity of anaerobic microbial populations in oil sands tailings ponds and the sedimentation of tailings. Chemosphere 81:663–668

    Article  CAS  PubMed  Google Scholar 

  • Bray MS, Wu J, Reed BC et al (2017) Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations. Geobiology 15:678–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown LD, Ulrich A (2015) Oil sands naphthenic acids: a review of properties, measurement, and treatment. Chemosphere 127:276–290

    Article  CAS  PubMed  Google Scholar 

  • Brown D, Ramos-Padrón E, Gieg L et al (2013) Effect of calcium ions and anaerobic microbial activity on sedimentation of oil sands tailings. Int Biodeterior Biodegrad 81:9–16

    Article  CAS  Google Scholar 

  • Burkus Z, Wheler J, Pletcher S (2014) GHG emissions from oil sands tailings ponds: overview and modeling based on fermentable substrates. Alberta Environment and Sustainable Resource Development. Electronic report available at http://hdl.handle.net/10402/era.30197:24, pp 2014. Last accessed Dec 2017

  • Callaghan AV (2013) Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol 4:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Callaghan AV, Gieg LM, Kropp KG et al (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 72:4274–4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalaturnyk RJ, Scott JD, Özüm B (2002) Management of oil sands tailings. Pet Sci Technol 20:1025–1046

    Article  CAS  Google Scholar 

  • Chen M, Walshe G, Chi Fru E et al (2013) Microcosm assessment of the biogeochemical development of sulfur and oxygen in oil sands fluid fine tailings. Appl Geochem 37:1–11

    Article  CAS  Google Scholar 

  • Cheng L, Ding C, Li Q et al (2013) DNA-SIP reveals that Syntrophaceae play an important role in methanogenic hexadecane degradation. PLoS One 8:e66784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi Fru E, Chen M, Walshe G et al (2013) Bioreactor studies predict whole microbial population dynamics in oil sands tailings ponds. Appl Microbiol Biotechnol 97:3215–3224

    Article  PubMed  CAS  Google Scholar 

  • Clothier LN, Gieg LM (2016) Anaerobic biodegradation of surrogate naphthenic acids. Water Res 90:156–166

    Article  CAS  PubMed  Google Scholar 

  • Coleman ML, Hedrick DB, Lovley DR et al (1993) Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361:436–438

    Article  CAS  Google Scholar 

  • Collins CEV, Foght JM, Siddique T (2016) Co-occurrence of methanogenesis and N2 fixation in oil sands tailings. Sci Total Environ 565:306–312

    Article  CAS  PubMed  Google Scholar 

  • Dean C, Xiao Y, Roberts DJ (2016) Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings. Can J Microbiol 62:870–879

    Article  CAS  PubMed  Google Scholar 

  • Demeter MA, Lemire J, George I et al (2014) Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere 97:78–85

    Article  CAS  PubMed  Google Scholar 

  • Dobbin PS, Carter JP, Juan CG-S et al (1999) Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol Lett 176:131–138

    Article  CAS  PubMed  Google Scholar 

  • Dompierre KA, Lindsay MBJ, Cruz-Hernandez P et al (2016) Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake. Sci Total Environ 556:196–206

    Article  CAS  PubMed  Google Scholar 

  • Eckert WF, Masliyah JH, Gray MR et al (1996) Prediction of sedimentation and consolidation of fine tails. AIChE J 42:960–972

    Article  CAS  Google Scholar 

  • Fedorak PM, Coy DL, Salloum MJ, Dudas MJ (2002) Methanogenic potential of tailings samples from oil sands extraction plants. Can J Microbiol 48:21–33

    Article  CAS  PubMed  Google Scholar 

  • Fedorak PM, Coy DL, Dudas MJ et al (2003) Microbially-mediated fugitive gas production from oil sands tailings and increased tailings densification rates. J Environ Eng Sci 2:199–211

    Article  CAS  Google Scholar 

  • Foght JM (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120

    Article  CAS  PubMed  Google Scholar 

  • Foght JM, Siddique T (2014) Microbial analysis of CNRL tailings. Report to Canadian Natural Resources Ltd, Aug 2014

    Google Scholar 

  • Foght JM, Fedorak PM, Westlake DWS (1985) Microbial content and metabolic activities in Syncrude tailings pond. AOSTRA J Res 1:139–146

    CAS  Google Scholar 

  • Foght JM, Gieg LM, Siddique T (2017) The microbiology of oil sands tailings: past, present, future. FEMS Microbiol Ecol 93:fix034

    Article  CAS  Google Scholar 

  • Folwell BD, McGenity TJ, Price A et al (2016) Exploring the capacity for anaerobic biodegradation of polycyclic aromatic hydrocarbons and naphthenic acids by microbes from oil-sands-process-affected waters. Int Biodeterior Biodegrad 108:214–221

    Article  CAS  Google Scholar 

  • Fowler SJ, Gutierrez-Zamora M-L, Manefield M, Gieg LM (2014) Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiol Ecol 89:625–636

    Article  CAS  PubMed  Google Scholar 

  • Frank RA, Fischer K, Kavanagh R et al (2009) Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environ Sci Technol 43:266–271

    Article  CAS  PubMed  Google Scholar 

  • Gee KF, Yin Poon H, Hashisho Z, Ulrich AC (2017) Effect of naphtha diluent on greenhouse gases and reduced sulfur compounds emissions from oil sands tailings. Sci Total Environ 598:916–924

    Article  CAS  PubMed  Google Scholar 

  • Gray ND, Sherry A, Grant RJ et al (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13:2957–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundmann O, Behrends A, Rabus R et al (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10:376–385

    Article  CAS  PubMed  Google Scholar 

  • Guezennec AG, Michel C, Bru K et al (2015) Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review. Environ Sci Pollut Res 22:6390–6406

    Article  CAS  Google Scholar 

  • Gunawan Y, Nemati M, Dalai A (2014) Biodegradation of a surrogate naphthenic acid under denitrifying conditions. Water Res 51:11–24

    Article  CAS  PubMed  Google Scholar 

  • Guo C (2009) Rapid densification of the oil sands mature fine tailings (MFT) by microbial activity. PhD thesis, University of Alberta, Edmonton

    Google Scholar 

  • Haack EA, Warren LA (2003) Biofilm hydrous manganese oxyhydroxides and metal dynamics in acid rock drainage. Environ Sci Technol 37:4138–4147

    Article  CAS  PubMed  Google Scholar 

  • Han X, Scott AC, Fedorak PM et al (2008) Influence of molecular structure on the biodegradability of naphthenic acids. Environ Sci Technol 42:1290–1295

    Article  CAS  PubMed  Google Scholar 

  • Haveroen ME, MacKinnon MD, Fedorak PM (2005) Polyacrylamide added as a nitrogen source stimulates methanogenesis in consortia from various wastewaters. Water Res 39:3333–3341

    Article  CAS  PubMed  Google Scholar 

  • Headley JV, Peru KM, Tanapat S, Putz G (2002) Biodegradation kinetics of geometric isomers of model naphthenic acids in Athabasca River water. Can Water Res J 27:25–42

    Article  Google Scholar 

  • Heider J, Schuhle K (2013) Anaerobic biodegradation of hydrocarbons including methane. In: Rosenberg E et al (eds) The prokaryotes-prokaryotic physiology and biochemistry. Springer, Heidelberg, pp 605–634

    Google Scholar 

  • Holland KT, Knapp JS, Shoesmith JG (1987) Anaerobic bacteria. Chapman and Hall, New York, pp 130–133

    Book  Google Scholar 

  • Holowenko FM, MacKinnon MD, Fedorak PM (2000) Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste. Can J Microbiol 46:927–937

    Article  CAS  PubMed  Google Scholar 

  • Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71:3355–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaisi DP, Dong H, Liu C (2007) Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochim Cosmochim Acta 71:1145–1158

    Article  CAS  Google Scholar 

  • Jiang S, Park S, Yoon Y et al (2013) Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. Environ Sci Technol 47:10078–10084

    Article  CAS  PubMed  Google Scholar 

  • Johnson RJ, Smith BE, Sutton PA et al (2011) Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching. ISME J 5:486–496

    Article  CAS  PubMed  Google Scholar 

  • Kaminsky HAW, Etsell TH, Ivey DG, Omotoso O (2008) Characterization of heavy minerals in the Athabasca oil sands. Miner Eng 21:264–271

    Article  CAS  Google Scholar 

  • Kostka JE, Dalton DD, Skelton H et al (2002) Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl Environ Microbiol 68:6256–6262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunapuli U, Lueders T, Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1:643–653

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov P, Kuznetsova A, Foght JM et al (2015) Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying. Sci Total Environ 505:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova A, Kuznetsov P, Foght JM et al (2016) Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage. Sci Total Environ 571:699–710

    Article  CAS  PubMed  Google Scholar 

  • Larter SR, Head IM (2014) Oil sands and heavy oil: origin and exploitation. Elements 10:277–283

    Article  CAS  Google Scholar 

  • Lehours AC, Batisson I, Guedon A, Mailhot G, Fonty G (2009) Diversity of culturable bacteria, from the anaerobic zone of the meromictic Lake Pavin, able to perform dissimilatory-iron Reduction in different in vitro conditions. Geomicrobiol J 26:212–223

    Article  CAS  Google Scholar 

  • Li C (2010) Methanogenesis in oil sands tailings: an analysis of the microbial community involved and its effects on tailings densification. MSc thesis, University of Alberta, Edmonton

    Google Scholar 

  • Liang B, Wang L-Y, Mbadinga SM et al (2015) Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5:37

    Article  PubMed Central  CAS  Google Scholar 

  • Liu D, Wang H, Dong H et al (2011) Mineral transformations associated with goethite reduction by Methanosarcina barkeri. Chem Geol 288:53–60

    Article  CAS  Google Scholar 

  • Liu H, Tan S, Yu T, Liu Y (2016) Sulfate reducing bacterial community and in situ activity in mature fine tailings analyzed by real time qPCR and microsensor. J Environ Sci 44:141–147

    Article  Google Scholar 

  • Lonergan DJ, Jenter HL, Coates JD et al (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR (2006) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. Chapter 1.21, Prokaryotes 2:635–658

    Google Scholar 

  • Luo F, Gitiafroz R, Devine CE et al (2014) Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 80:4095–4107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacKinnon MD (1989) Development of the tailings pond at Syncrude’s oil sands plant: 1978–1987. AOSTRA J Res 5:109–133

    CAS  Google Scholar 

  • Madill REA, Brownlee BG, Josephy PD, Bunce NJ (1999) Comparison of the ames Salmonella assay and mutatox genotoxicity assay for assessing the mutagenicity of polycyclic aromatic compounds in porewater from Athabasca oil sands mature fine tailings. Environ Sci Technol 33:2510–2516

    Article  CAS  Google Scholar 

  • Mbadinga SM, Wang L, Zhou L et al (2011) Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegrad 65:1–13

    Article  CAS  Google Scholar 

  • Meier J, Costa R, Smalla K, Boehrer B, Wendt-Potthoff K (2005) Temperature dependence of Fe(III) and sulfate reduction rates and its effect on growth and composition of bacterial enrichments from an acidic pit lake neutralization experiment. Geobiology 3:261–274

    Article  CAS  Google Scholar 

  • Misiti T, Tandukar M, Tezel U, Pavlostathis SG (2013) Inhibition and biotransformation potential of naphthenic acids under different electron accepting conditions. Water Res 47:406–418

    Article  CAS  PubMed  Google Scholar 

  • Mohamad Shahimin MF, Siddique T (2017a) Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings. Sci Total Environ 583:115–122

    Article  CAS  PubMed  Google Scholar 

  • Mohamad Shahimin MF, Siddique T (2017b) Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings. Environ Pollut 221:398–406

    Article  CAS  PubMed  Google Scholar 

  • Mohamad Shahimin MF, Foght JM, Siddique T (2016) Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds. Sci Total Environ 553:250–257

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–343

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JL, Juretschko S, Wagner M, Nielsen PH (2002) Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography. Appl Environ Microbiol 68:4629–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penner TJ, Foght JM (2010) Mature fine tailings from oil sands processing harbor diverse methanogenic communities. Can J Microbiol 56:459–470

    Article  CAS  PubMed  Google Scholar 

  • Pina PS, Oliveira VA, Cruz FLS, Leão VA (2010) Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans. Biochem Eng J 51:194–197

    Article  CAS  Google Scholar 

  • Quagraine EK, Headley JV, Peterson HG (2005) Is biodegradation of bitumen a source of recalcitrant naphthenic acid mixtures in oil sands tailings pond waters? J Environ Sci Health Pt A 40:671–684

    Article  CAS  Google Scholar 

  • Rabus R, Wilkes H, Behrends A et al (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183:1707–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Padrón E, Bordenave S, Lin S et al (2011) Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 45:439–446

    Article  PubMed  CAS  Google Scholar 

  • Reid ML, Warren LA (2016) S reactivity of an oil sands composite tailings deposit undergoing reclamation wetland construction. J Environ Manag 166:321–329

    Article  CAS  Google Scholar 

  • Reid T, Boudens R, Ciborowski JJH, Weisener CG (2016) Physicochemical gradients, diffusive flux, and sediment oxygen demand within oil sands tailings materials from Alberta, Canada. Appl Geochem 75:90–99

    Article  CAS  Google Scholar 

  • Rochman FF, Sheremet A, Tamas I et al (2017) Benzene and naphthalene degrading bacterial communities in an oil sands tailings pond. Front Microbiol 8:1845

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers VV, Wickstrom M, Liber K, Mackinnon MD (2002) Acute and subchronic mammalian toxicity of naphthenic acids from oil sands tailings. Toxicol Sci 66:347–355

    Article  CAS  PubMed  Google Scholar 

  • Saidi-Mehrabad A, He Z, Tamas I et al (2013) Methanotrophic bacteria in oil sands tailings ponds of northern Alberta. ISME J 7:908–921

    Article  CAS  PubMed  Google Scholar 

  • Salloum MJ, Dudas MJ, Fedorak PM (2002) Microbial reduction of amended sulfate in anaerobic mature fine tailings from oil sand. Waste Manag Res 20:162–171

    Article  CAS  PubMed  Google Scholar 

  • Scott AC, MacKinnon MD, Fedorak P (2005) Naphthenic acids in Athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids. Environ Sci Technol 39:8388–8394

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Fedorak PM, Foght JM (2006) Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environ Sci Technol 40:5459–5464

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Fedorak PM, MacKinnon MD, Foght JM (2007) Metabolism of BTEX and naphtha compounds to methane in oil sands tailings. Environ Sci Technol 41:2350–2356

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Gupta R, Fedorak PM et al (2008) A first approximation kinetic model to predict methane generation from an oil sands tailings settling basin. Chemosphere 72:1573–1580

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45:5892–5899

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Penner T, Klassen J, Nesbø C, Foght JM (2012) Microbial communities involved in methane production from hydrocarbons in oil sands tailings. Environ Sci Technol 46:9802–9810

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Kuznetsov P, Kuznetsova A, Arkell N, Young R, Li C, Guigard S, Underwookd E, Foght JM (2014a) Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry. Front Microbiol 5:106

    PubMed  PubMed Central  Google Scholar 

  • Siddique T, Kuznetsov P, Kuznetsov A, Li C, Young R, Arocena JM, Foght JM (2014b) Microbially-accelerated consolidation of oil sand tailings. Pathway II: solid phase biogeochemistry. Front Microbiol 5:107

    PubMed  PubMed Central  Google Scholar 

  • Siddique T, Mohamad Shahimin MF, Zamir S, Semple K, Li C, Foght JM (2015) Long-term incubation reveals methanogenic biodegradation of C5 and C6 iso-alkanes in oil sands tailings. Environ Sci Technol 49:14732–14739

    Article  CAS  PubMed  Google Scholar 

  • Simpson IJ, Blake NJ, Barletta B et al (2010) Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2. Atmos Chem Phys 10:11931–11954

    Article  CAS  Google Scholar 

  • Small CC, Cho S, Hashisho Z et al (2015) Emissions from oil sands tailings ponds: review of tailings pond parameters and emission estimates. J Pet Sci Eng 127:490–501

    Article  CAS  Google Scholar 

  • Smith BE, Lewis CA, Belt ST et al (2008) Effects of alkyl chain branching on the biotransformation of naphthenic acids. Environ Sci Technol 42:9323–9328

    Article  CAS  PubMed  Google Scholar 

  • Sobolewski A (1997) Anaerobic microbial populations at the Syncrude lease. Consultant’s memo to Syncrude, pp 4

    Google Scholar 

  • Sobolewski A (1999a) Evolution of microbial populations in process-affected aquatic ecosystems. Consultant’s report to Syncrude, Edmonton, June, 49 pp

    Google Scholar 

  • Sobolewski A (1999b) Survey of anaerobic bacteria in tailings samples at the Syncrude lease. 290 Consultant’s report to Syncrude, June, 20 pp

    Google Scholar 

  • Stasik S, Wendt-Potthoff K (2014) Interaction of microbial sulphate reduction and methanogenesis in oil sands tailings ponds. Chemosphere 103:59–66

    Article  CAS  PubMed  Google Scholar 

  • Stasik S, Wendt-Potthoff K (2016) Vertical gradients in carbon flow and methane production in a sulfate-rich oil sands tailings pond. Water Res 106:223–231

    Article  CAS  PubMed  Google Scholar 

  • Stasik S, Loick N, Knöller K, Weisener CG, Wendt-Potthoff K (2014) Understanding biogeochemical gradients of sulfur, iron and carbon in an oil sands tailings pond. Chem Geol 382:44–53

    Article  CAS  Google Scholar 

  • Stasik S, Wick LY, Wendt-Potthoff K (2015) Anaerobic BTEX degradation in oil sands tailings ponds: impact of labile organic carbon and sulfate-reducing bacteria. Chemosphere 138:133–139

    Article  CAS  PubMed  Google Scholar 

  • Straub KL, Schink B (2004) Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl Environ Microbiol 70:5744–5749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan B, Dong X, Sensen CW, Foght JM (2013) Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome 56:599–511

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Rozycki T, Foght JM (2014a) Draft genome sequences of three Smithella spp. obtained from a methanogenic alkane-degrading culture and oil field produced water. Genome Announc 2:e01085–e01014

    PubMed  PubMed Central  Google Scholar 

  • Tan B, Charchuk R, Li C, Laban NA, Foght JM (2014b) Draft genome sequence of uncultivated firmicutes (Peptococcaceae SCADC) single cells sorted from methanogenic alkane-degrading cultures. Genome Announc 2:e00909–e00914

    PubMed  PubMed Central  Google Scholar 

  • Tan B, Semple K, Foght JM (2015) Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition. FEMS Microbiol Ecol 91:fiv042

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Zhuang L, Ma J et al (2016) Secondary mineralization of ferrihydrite affects microbial methanogenesis in Geobacter-Methanosarcina cocultures. Appl Environ Microbiol 82:5869–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vedoy DRL, Soares JBP (2015) Water-soluble polymers for oil sands tailing treatment: a Review. Can J Chem Eng 93:888–904

    Article  CAS  Google Scholar 

  • von Netzer F, Pilloni G, Kleindienst S et al (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552

    Article  CAS  Google Scholar 

  • Voordouw G (2012) Interaction of oil sands tailings particles with polymers and microbial cells: first steps toward reclamation to soil. Biopolymers 99:257–262

    Article  CAS  Google Scholar 

  • Wang Y, Zeng W, Qiu G et al (2014) A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density. Appl Environ Microbiol 80:741–750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warren LA, Kendra KE, Brady AL, Slater GF (2016) Sulfur biogeochemistry of an oil sands composite tailings deposit. Front Microbiol 6:1533

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Article  CAS  PubMed  Google Scholar 

  • Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1997–2021

    Chapter  Google Scholar 

  • Wilson SL, Li C, Ramos-Padron E et al (2016) Oil sands tailings ponds harbour a small core prokaryotic microbiome and diverse accessory communities. J Biotechnol 235:187–196

    Article  CAS  PubMed  Google Scholar 

  • Xingyu L, Rongbo S, Bowei C et al (2009) Bacterial community structure change during pyrite bioleaching process: effect of pH and aeration. Hydrometallurgy 95:267–272

    Article  CAS  Google Scholar 

  • Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y (2014) Inhibitory effects of ferrihydrite on a thermophilic methanogenic community. Microbes Environ 29:227–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao D, Zhanga X, Wanga G et al (2017) A novel parameter for evaluating the influence of iron oxide on the methanogenic process. Biochem Eng J 125:144–150

    Article  CAS  Google Scholar 

  • Yue S, Ramsay BA, Ramsay JA (2015) Biodegradation of naphthenic acid surrogates by axenic cultures. Biodegradation 26:313–325

    Article  CAS  PubMed  Google Scholar 

  • Zedelius J, Rabus R, Grundmann O et al (2011) Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep 3:125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dong H, Liu D et al (2012) Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chem Geol 292-293:35–44

    Article  CAS  Google Scholar 

  • Zheng S, Wang B, Liu F, Wang O (2017) Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments. J Microbiol 55:862–870

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Xu J, Yang G, Zhuang L (2014) Methanogenesis affected by the co-occurrence of iron (III) oxides and humic substances. FEMS Microbiol Ecol 88:107–120

    Article  CAS  PubMed  Google Scholar 

  • Zhu R, Liu Q, Xu Z et al (2011) Role of dissolving carbon dioxide in densification of oil sands tailings. Energy Fuel 25:2049–2057

    Article  CAS  Google Scholar 

  • Zhu M-Y, Peng S-C, Tao W et al (2017) Response of methane production and microbial community to the enrichment of soluble microbial products in goethite-dosed anaerobic reactors. Fuel 191:495–499

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the Helmholtz-Alberta Initiative, NSERC, Canada Foundation for Innovation, Alberta Innovates Energy and Environment Solutions, the Institute for Oil Sands Innovation, Syncrude Canada Ltd. Shell Albian Sands, Canadian Natural Resources Ltd., Suncor Energy, and Total E&P Canada for research funding, resource materials and research infrastructure. We thank our many research leaders, collaborators, and co-authors, including Julia Foght, Phil Fedorak, Rejendar Gupta, Ania Ulrich, Christopher Weisener and Camilla Nesbø; industry advisors, particularly Mike MacKinnon and Tara Penner (Syncrude); André Sobolewski (Microbial Technologies) for providing insight and information from early studies; and Zvonko Burkus (Alberta Environment and Sustainable Resource Development) for valuable discussions. Finally, we gratefully acknowledge the contributions of Kathy Semple, Alsu Kuznetsova, Petr Kuznetsov, Carmen Li, Matthias Koschorreck and invaluable laboratory members too numerous to list who have been essential to the authors’ oil sands research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Siddique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Siddique, T., Stasik, S., Mohamad Shahimin, M.F., Wendt-Potthoff, K. (2018). Microbial Communities in Oil Sands Tailings: Their Implications in Biogeochemical Processes and Tailings Management. In: McGenity, T. (eds) Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology . Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-60063-5_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60063-5_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60063-5

  • Online ISBN: 978-3-319-60063-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics