Skip to main content

Aerobic Hydrocarbon-Degrading Alphaproteobacteria: Rhodobacteraceae (Roseobacter)

  • Living reference work entry
  • First Online:
Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes

Abstract

Members of the Roseobacter lineage of bacteria are prevalent in diverse marine environments where they carry out critical biogeochemical processes. Recent reports, based primarily on culture-independent studies and reviewed here, provide compelling evidence that members of this abundant lineage are involved in hydrocarbon degradation in natural systems. Five distinct pathways for the aerobic degradation of aromatic compounds are commonly identified in Roseobacter genomes, as are genes encoding alkane hydroxylases and uncharacterized ring-cleaving and ring-hydroxylating dioxygenases. Taken together, these findings suggest roseobacters, a group historically overlooked with regard to this physiology, may play important roles in the degradation of hydrocarbons at both naturally occurring and elevated levels in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams MA, Singh VK, Keller BO, Jia Z (2006) Structural and biochemical characterization of gentisate 1,2-dioxygenase from Escherichia coli O157:H7. Mol Microbiol 61:1469–1484

    Google Scholar 

  • Alejandro-Marin CM, Bosch R, Nogales B (2014) Comparative genomics of the protocatechuate branch of the beta-ketoadipate pathway in the Roseobacter lineage. Mar Genomics 17:25–33

    Google Scholar 

  • Bastard K, Smith AAT, Vergne-Vaxelaire C, Perret A, Zaparucha A, Melo-Minardi RD, Mariage A, Boutard M, Debard A, Lechaplais C, Pelle C, Pellouin V, Perchat N, Petit J-L, Kreimeyer A, Medigue C, Weissenbach J, Artiguenave F, De Berardinis V, Vallenet D, Salanoubat M (2014) Revealing the hidden functional diversity of an enzyme family. Nat Chem Biol 10:42–49

    Google Scholar 

  • Biers EJ, Wang K, Pennington C, Belas R, Chen F, Moran MA (2008) Occurrence and expression of gene transfer agent genes in marine bacterioplankton. Appl Environ Microbiol 74:2933–2939

    Google Scholar 

  • Brakstad OG, Lødeng AGG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49:94–103

    Google Scholar 

  • Brinkhoff T, Giebel H-A, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539

    Google Scholar 

  • Brito EM, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MA, Wasserman JC, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157:752–762

    Google Scholar 

  • Buchan A, Neidle EL, Moran MA (2004) Diverse organization of genes of the β-ketoadipate pathway in members of the marine Roseobacter lineage. Appl Environ Microbiol 70:1658–1668

    Google Scholar 

  • Buchan A, González JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677

    Google Scholar 

  • Butler CS, Mason JR (1997) Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 38:47–84

    Google Scholar 

  • Cao J, Lai Q, Yuan J, Shao Z (2015) Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73 T. Sci Rep 5:7741

    Google Scholar 

  • Cappello S, Genovese M, Della Torre C, Crisari A, Hassanshahian M, Santisi S, Calogero R, Yakimov MM (2012) Effect of bioemulsificant exopolysaccharide (EPS(2)(0)(0)(3)) on microbial community dynamics during assays of oil spill bioremediation: a microcosm study. Mar Pollut Bull 64:2820–2828

    Google Scholar 

  • Chang Y-J, Stephen JR, Richter AP, Venosa AD, Brüggemann J, Macnaughton SJ, Kowalchuk GA, Haines JR, Kline E, White DC (2000) Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J Microbiol Methods 40:19–31

    Google Scholar 

  • Christie-Oleza JA, Armengaud J (2015) Proteomics of the Roseobacter clade, a window to the marine microbiology landscape. Proteomics 15:3928–3942

    Google Scholar 

  • Chronopoulou PM, Sanni GO, Silas-Olu DI, van der Meer JR, Timmis KN, Brussaard CP, McGenity TJ (2015) Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea. Microb Biotechnol 8:434–447

    Google Scholar 

  • Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186

    Google Scholar 

  • Ferrández A, Miñambres B, García B, Olivera ER, Luengo JM, García JL, Díaz E (1998) Catabolism of Phenylacetic acid in Escherichia coli. J Biol Chem 273:25974–25986

    Google Scholar 

  • Giebel HA (2018) Tritonibacter horizontis gen. nov., sp. nov., a member of the Rhodobacteraceae, isolated from the Deepwater Horizon oil spill. Int J Syst Evol Microbiol 68:736

    Google Scholar 

  • Giebel HA, Klotz F, Voget S, Poehlein A, Grosser K, Teske A, Brinkhoff T (2016) Draft genome sequence of the marine Rhodobacteraceae strain O3. 65, cultivated from oil-polluted seawater of the Deepwater Horizon oil spill. Stand Genomic Sci 11:81

    Google Scholar 

  • González JM, Johnston AWB, Vila-Costa M, Buchan A (2010) Genetics and molecular features of bacterial dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) transformations. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1201–1211. https://doi.org/10.1007/978-3-540-77587-4_83

    Google Scholar 

  • Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 33:533–551

    Google Scholar 

  • Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753

    Google Scholar 

  • Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Google Scholar 

  • Hernandez-Raquet G, Budzinski H, Caumette P, Dabert P, Le Ménach K (2006) Molecular diversity studies of bacterial communities of oil polluted microbial mats from the Etang de Berre (France). FEMS Microbiol Ecol 58:550–562

    Google Scholar 

  • Jimenez N, Vinas M, Guiu-Aragones C, Bayona JM, Albaiges J, Solanas AM (2011) Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. Appl Microbiol Biotechnol 91:823–834

    Google Scholar 

  • Katayama Y, Oura T, Iizuka M, Orita I, Cho KJ, Chung IY, Okada M (2003) Effects of spilled oil on microbial communities in a tidal flat. Mar Pollut Bull 47:85–90

    Google Scholar 

  • Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding B, Drozdowska M, Hazen TC, Suflita JM, Morris PJ (2013) Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4:50

    Google Scholar 

  • Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson JK (2014) Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Front Microbiol 5:130

    Google Scholar 

  • Liu D, Zhu T, Fan L, Quan J, Guo H, Ni J (2007) Identification of a novel gentisate 1,2 dioxygenase from Silicibacter pomeroyi. Biotechnol Lett 29:1529–1535

    Google Scholar 

  • Luo HW, Moran MA (2014) Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 78:573–587

    Google Scholar 

  • Luo H, Swan BK, Stepanauskas R, Hughes AL, Moran MA (2014) Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters. ISME J 8:1428–1439

    Google Scholar 

  • Mahjoubi M, Jaouani A, Guesmi A, Ben Amor S, Jouini A, Cherif H, Najjari A, Boudabous A, Koubaa N, Cherif A (2013) Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential. New Biotechnol 30:723–733

    Google Scholar 

  • McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176

    Google Scholar 

  • Mishamandani S, Gutierrez T, Berry D, Aitken MD (2016) Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons. Environ Microbiol 18:1817–1833

    Google Scholar 

  • Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913

    Google Scholar 

  • Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, Binder BJ, Edmonds J, Ye W, Orcutt B, Howard EC, Meile C, Palefsky W, Goesmann A, Ren Q, Paulsen I, Ulrich LE, Thompson LS, Saunders E, Buchan A (2007) Ecological genomics of marine Roseobacters. Appl Environ Microbiol 73:4559–4569

    Google Scholar 

  • Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR, Rinta-Kanto JM, Sharma S, Sun SL, Varaljay V, Vila-Costa M, Westrich JR, Moran MA (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798

    Google Scholar 

  • Nie Y, Chi C-Q, Fang H, Lian J-L, Lu S-L, Lai G-L, Tang Y-Q, Wu X-L (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968

    Google Scholar 

  • Noda Y, Nishikawa S, Shiozuka K, Kadokura H, Nakajima H, Yoda K, Katayama Y, Morohoshi N, Haraguichi T, Yamasaki M (1990) Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 172:2704–2709

    Google Scholar 

  • Norris TB, Wraith JM, Castenholz RW, McDermott TR (2002) Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl Environ Microbiol 68:6300–6309

    Google Scholar 

  • Pérez-Pantoja D, González B, Pieper DH (2016) Aerobic degradation of aromatic hydrocarbons. In: Rojo F (ed) Hydrocarbon and lipid microbiology protocols: aerobic utilization of hydrocarbons, oils and lipids. Springer, Berlin. https://doi.org/10.1007/978-3-319-39782-5_10-1

    Google Scholar 

  • Petersen J, Frank O, Goeker M, Pradella S (2018) Extrachromosomal, extraordinary and essential-the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol 97:2805–2815

    Google Scholar 

  • Prabagaran SR, Manorama R, Delille D, Shivaji S (2007) Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol Ecol 59:342–355

    Google Scholar 

  • Pradella S, Allgaier M, Hoch C, Päuker O, Stackebrandt E, Wagner-Döbler I (2004) Genome organization and localization of the pufLM genes of the photosynthesis reaction center in phylogenetically diverse marine Alphaproteobacteria. Appl Environ Microbiol 70:3360–3369

    Google Scholar 

  • Roper DI, Fawcett T, Cooper RA (1993) The Escherichia coli C homoprotocatechuate degradative operon: hpc gene order, direction of transcription and control of expression. Mol Gen Genet 237:241–250

    Google Scholar 

  • Sanni GO, Coulon F, McGenity TJ (2015) Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms. Environ Sci Pollut Res Int 22:15230–15247

    Google Scholar 

  • Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O'Huallachain ME, Lince MT, Blankenship RE, Beatty JT, Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 189:683–690

    Google Scholar 

  • Tang K, Yang YJ, Lin D, Li SH, Zhou WC, Han Y, Liu KS, Jiao NZ (2016) Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water. Sci Rep 6. https://doi.org/10.1038/srep35528

  • Todorova NH, Mironova RS, Karamfilov VK (2014) Comparative molecular analysis of bacterial communities inhabiting pristine and polluted with polycyclic aromatic hydrocarbons Black Sea coastal sediments. Mar Pollut Bull 83:231–240

    Google Scholar 

  • van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Google Scholar 

  • Viggor S, Juhanson J, Joesaar M, Mitt M, Truu J, Vedler E, Heinaru A (2013) Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel. Microbiol Res 168:415–427

    Google Scholar 

  • Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, Brinkhoff T, Simon M, Daniel R (2013) Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS One 8:e63422

    Google Scholar 

  • Wagner-Döbler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280

    Google Scholar 

  • Wang H, Wang B, Dong W, Hu X (2016) Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures. Sci Rep 6:34588

    Google Scholar 

  • Yang T, Speare K, McKay L, MacGregor BJ, Joye SB, Teske A (2016) Distinct bacterial communities in surficial seafloor sediments following the 2010 Deepwater Horizon Blowout. Front Microbiol 7:1384

    Google Scholar 

  • Ying J-Y, Wang B-J, Xin D, Yang S-S, Liu S-J, Liu Z-P (2007) Wenxina marina gen. nov., sp. nov., a novel member of the Roseobacter clade isolated from oilfield sediments of the South China Sea. Int J Syst Evol Microbiol 57:1711–1716

    Google Scholar 

  • Zaar A, Gescher J, Eisenreich W, Bacher A, Fuchs G (2004) New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Mol Microbiol 54:223–238

    Google Scholar 

  • Zhou HW, Wong AH, Yu RM, Park YD, Wong YS, Tam NF (2009) Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment. Microb Ecol 58:153–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Buchan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Buchan, A., González, J.M., Chua, M.J. (2019). Aerobic Hydrocarbon-Degrading Alphaproteobacteria: Rhodobacteraceae (Roseobacter). In: McGenity, T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-60053-6_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60053-6_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60053-6

  • Online ISBN: 978-3-319-60053-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics