Skip to main content

Occurrence and Roles of the Obligate Hydrocarbonoclastic Bacteria in the Ocean When There Is No Obvious Hydrocarbon Contamination

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

The obligate hydrocarbonoclastic bacteria (OHCB) are an intriguing group of microorganisms for their unique ability to utilize hydrocarbons almost exclusively as a sole source of carbon and energy. Based on their narrow nutritional requirement for hydrocarbons as their major food source, these organisms are nonetheless found distributed throughout the global ocean and not confined to regions where there is an obvious source of petrochemical contamination from either anthropogenic (e.g., oil spills) or natural (e.g., oil seep) sources. The OHCB have been found in seawater and sediment samples collected from remote oligotrophic regions, such as Arctic and Antarctic waters, where there is no obvious hydrocarbon pollution. Some recently discovered OHCB have not yet been found in oil-contaminated sites. Collectively, this suggests that these organisms would likely be acquiring hydrocarbon or hydrocarbon-like substrates from sources other than the obvious oil spills and oil seeps. This chapter therefore provides a look at the various possible sources from which the OHCB could acquire hydrocarbons that may play an important part to sustaining their existence in remote and “pristine” marine environments.

This is a preview of subscription content, log in via an institution.

References

  • Acuña Alvarez L, Exton DA, Timmis KN, Suggett DJ, McGenity TJ (2009) Characterization of marine isoprene-degrading communities. Environ Microbiol 11:3280–3291

    Article  CAS  Google Scholar 

  • Amin SA, Green DH, Hart MC, Kupper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci U S A 106:17071–17076

    Article  PubMed  PubMed Central  Google Scholar 

  • Andelman JB, Suess MJ (1970) Polynuclear aromatic hydrocarbons in the water environment. Bull World Health Organ 43:479–508

    PubMed  PubMed Central  CAS  Google Scholar 

  • Allamandola LJ, Tielens AG, Barker JR (1989) Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys J Suppl Ser 71:733–775

    Article  PubMed  CAS  Google Scholar 

  • Arnosti C, Ziervogel K, Yang T, Teske A (2016) Oil-derived marine aggregates – hot spots of polysaccharide degradation by specialized bacterial communities. Deep-Sea Res II 129:179–186

    Article  CAS  Google Scholar 

  • Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemia M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman H-Y, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416

    Article  PubMed  CAS  Google Scholar 

  • Becker JR (1997) Crude oil waxes, emulsions, and asphaltenes. Pennwell Books. Tulsa, Oklahoma.

    Google Scholar 

  • Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143:265–277

    Article  Google Scholar 

  • Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW (2014) Bacterial vesicles in marine ecosystems. Science 343:183–186

    Article  PubMed  CAS  Google Scholar 

  • Binark N, Guven KC, Gezgin T, Unlu S (2000) Oil pollution of marine algae. Bull Environ Contam Toxicol 64:866–872

    Article  PubMed  CAS  Google Scholar 

  • Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 509–546

    Chapter  Google Scholar 

  • Blumer M, Mullin MM, Thomas DW (1964) Pristane in the marine environment. Helgol Mar Res 10:187–201

    CAS  Google Scholar 

  • Blumer M, Mullin MM, Thomas DW (1963) Pristane in zooplankton. Science 140:974

    Article  PubMed  CAS  Google Scholar 

  • Borneff J, Selenka F, Kunte H, Maximos A (1968) Experimental studies on the formation of polycyclic aromatic hydrocarbons in plants. Environ Res 2:22–29

    Article  CAS  Google Scholar 

  • Brassell SC, Wardroper AMK, Thomson ID, Maxwell JR, Eglinton G (1981) Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature 22:693–696

    Article  Google Scholar 

  • Brooks JD, Gould K, Smith JW (1969) Isoprenoid hydrocarbons in coal and petroleum. Nature 222:257–259

    Article  CAS  Google Scholar 

  • Chernova TG, Paropkari AL, Pikovskii YI, Alekseeva TA (1999) Hydrocarbons in the Bay of Bengal and Central Indian Basin bottom sediments, indicators of geochemical processes in the lithosphere. Mar Chem 66:231–243

    Article  CAS  Google Scholar 

  • Chin W-C, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Cripps GC (1990) Hydrocarbons in the seawater and pelagic organisms of the Southern Ocean. Polar Biol 10:393–402

    Article  Google Scholar 

  • Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its Estuary, and the adjacent coastal ocean phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River. Appl Environ Microbiol 65:3192–3103

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dalrymple GB (2001) The age of the Earth in the twentieth century: a problem (mostly) solved. Geol Soc Lond, Spec Publ 190:205–221

    Article  Google Scholar 

  • Decho AW, Gutierrez T (2017) Microbial extracellular polymer substances (EPSs) in ocean systems. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00922

  • Delmelle P, Stix J, Baxter PJ, Garcia-Alvarez J, Barquero J (2002) Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bull Volcanol 64:423–434

    Article  Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  • Del Vecchio R, Blough NV (2004) On the origin of the optical properties of humic substances. Environ Sci Technol 38:3885–3891

    Article  PubMed  CAS  Google Scholar 

  • Didyk BM, Simoneit BR, Brassel SC, Eglinton G (1978) Organic geochemical parameters of palaeoenvironmental conditions of sedimentation. Nature 272:216–222

    Article  CAS  Google Scholar 

  • Ding X, Wang X-M, Xie Z-Q, Xiang C-H, Mai B-X, Sun L-G, Zheng M, Sheng G-Y, Fu J-M, Pöschi U (2007) Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: spatial distribution and source identification. Atmos Environ 41:2061–2072

    Article  CAS  Google Scholar 

  • Duran Suja L, Summers S, Gutierrez T (2017) Role of EPS, dispersant and nutrients on the microbial response and MOS formation in the subarctic northeast Atlantic. Front Microbiol 8:676. https://doi.org/10.3389/fmicb.2017.00676

    Article  Google Scholar 

  • Evans KM, Gill RA, Robotham PWJ (1990) The PAH and organic content of sediment particle size fractions. Water Air Soil Pollut 51:13–31

    Article  CAS  Google Scholar 

  • Exton DA, Suggett DJ, Steinke M, McGenity TJ (2012) Spatial and temporal variability of biogenic isoprene emissions from a temperate estuary. Glob Biogeochem Cycles 26:GB2012

    Article  CAS  Google Scholar 

  • Fall R, Copley SD (2000) Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon. Environ Microbiol 2:123–130

    Article  PubMed  CAS  Google Scholar 

  • Fuoco R, Giannarelli S, Wei Y, Abete C, Francesconi S, Termine M (2005) Polychlorobiphenyls and polycyclic aromatic hydrocarbons in the sea-surface micro-layer and the water column at Gerlache Inlet, Antarctica. J Environ Monit 7:1313–1319

    Article  PubMed  CAS  Google Scholar 

  • Galliano F, Dwek E, Chanial P (2008) Stellar evolutionary effects on the abundances of polycyclic aromatic hydrocarbons and supernova–condensed dust in galaxies. Astrophys J 672:214–243

    Article  CAS  Google Scholar 

  • Gargaud M, Lopez-Garcia P, Martin H (2010) In: Gargaud M, Lopez-Garcia P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Genualdi SA, Killin RK, Woods J, Wilson G, Schmedding D, Simonich SLM (2009) Trans-Pacific and regional atmospheric transport of polycyclic aromatic hydrocarbons and pesticides in biomass burning emissions to western North America. Environ Sci Technol 43:1061–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gol’man LP, Mikhaseva MF, Reznikov VM (1973) Infrared spectra of lignin preparations of pteridophytes and seaweeds. Dokl Akad Nauk BSSR 17:1031–1033

    Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469

    Article  PubMed  CAS  Google Scholar 

  • Goossens H, de Leeuw JW, Schenck PA, Brassell SC (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312:440–442

    Article  CAS  Google Scholar 

  • Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS (2006) Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56:523–527

    Article  PubMed  CAS  Google Scholar 

  • Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJS (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47:345–357

    Article  PubMed  CAS  Google Scholar 

  • Gunnison D, Alexander M (1975) Basis for the resistance of several algae to microbial decomposition. Appl Microbiol 29:729–738

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez T, Leo VV, Walker GM, Green DH (2009a) Emulsifying properties of a glycoprotein extract produced by a marine Flexibacter species strain TG382. Enzym Microb Technol 45(1):53–57

    Article  CAS  Google Scholar 

  • Gutierrez T, Morris G, Green DH (2009b) Yield and physicochemical properties of EPS from Halomonas sp. strain TG39 identifies a role for protein and anionic residues (sulfate and phosphate) in emulsification of n-hexadecane. Biotechnol Bioeng 103(1):207–216

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez T, Green DH, Nichols PD, Whitman WB, Semple KT, Aitken MD (2012a) Algiphilus aromaticivorans gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from a culture of the marine dinoflagellate Lingulodinium polyedrum, and proposal of Algiphilaceae fam. nov. Int J Syst Evol Microbiol 62:2743–2749

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez T, Nichols PD, Whitman WB, Aitken MD (2012b) Porticoccus hydrocarbonoclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton. Appl Environ Microbiol 78:628–637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez T, Green DH, Whitman WB, Nichols PD, Semple KT, Aitken MD (2013a) Polycyclovorans algicola gen. nov., sp. nov., an aromatic hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl Environ Microbiol 79:205–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez T, Berry D, Yang T, Mishamandani S, McKay L, Teske A, Aitken M (2013b) Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the Deepwater Horizon oil spill. PLoS One. https://doi.org/10.1371/journal.pone.0067717

  • Gutierrez T, Rhodes G, Mishamandani S, Berry D, Whitman WB, Nichols PD, Semple KT, Aitken MD (2014) Polycyclic aromatic hydrocarbon degradation of phytoplankton-associated Arenibacter and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol 80:618–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansell DA, Carlson CA (1998) Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395:263–268

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  PubMed  CAS  Google Scholar 

  • Hryniuk A, Ross BM (2009) Detection of acetone and isoprene in human breath using a combination of thermal desorption and selected ion flow tube mass spectrometry. Int J Mass Spectrom 285:26–30

    Article  CAS  Google Scholar 

  • Iwata I, Tanabe S, Sakai N, Tatsukawa R (1993) Distribution of persistent organochlorinesin the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ Sci Technol 27:1080–1098

    Article  CAS  Google Scholar 

  • Jones KC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–221

    Article  PubMed  CAS  Google Scholar 

  • Jurado E, Dachs J (2008) Seasonality in the “grasshopping” and atmospheric residence times of persistent organic pollutants over the oceans. Geophys Res Lett 35:L17805

    Article  CAS  Google Scholar 

  • Kirk JTO (1983) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kowalewska G (1999) Phytoplankton – the main factor responsible for transport of polynuclear aromatic hydrocarbons from water to sediments in the Southern Baltic ecosystem. ICES J Mar Sci 56:219–222

    Article  Google Scholar 

  • Kozak K, Ruman M, Kosek K, Karasiński G, Stachnik Ł, Polkowska Ż (2017) Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen. Water 9:42. https://doi.org/10.3390/w9010042

    Article  CAS  Google Scholar 

  • Kuzma J, Nemecek-Marshall M, Pollock WH, Fall R (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30:97–103

    Article  PubMed  CAS  Google Scholar 

  • Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926

    Article  PubMed  CAS  Google Scholar 

  • Kwok S, Zhang Y (2011) Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 479:80–83

    Article  PubMed  CAS  Google Scholar 

  • Lea-Smith DJ, Biller SJ, Davey MP, Cotton CAR, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA 112:13591–13596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee RF, Gardner WS, Anderson JW, Blayblack JF, Barwell-Clarke J (1978) Fate of polycyclic aromatic hydrocarbons in controlled ecosystem enclosures. Environ Sci 17:282–286

    Google Scholar 

  • Li J, Peng X, Zhou H, Li J, Chen S, Wu Z, Yao H (2012) Characteristics and source of polycyclic aromatic hydrocarbons in the surface hydrothermal sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges. Geochem J 46:31–43

    Article  CAS  Google Scholar 

  • Li A, Shao Z (2014) Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5. PLoS One 9:e89144. https://doi.org/10.1371/journal.pone.0089144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim L, Wurl O, Karuppiah S, Obbard JP (2007) Atmospheric wet deposition of PAHs to the sea-surface microlayer. Mar Pollut Bull 54:1212–1219

    Article  PubMed  CAS  Google Scholar 

  • Liu A et al (2013) Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl Energy 111:383–393

    Article  CAS  Google Scholar 

  • Lohmann R, Breivik K, Dachs J, Muir D (2007) Global fate of POPs: current and future research trends. Environ Pollut 150:150–186

    Article  PubMed  CAS  Google Scholar 

  • Long RA, Azam F (1996) Abundant protein-containing particles in the sea. Aquat Microb Ecol 10:213–221

    Article  Google Scholar 

  • Mahajan TB, Elsila JE, Deamer DW, Zare RN (2003) Formation of carbon-carbon bonds in the photochemical alkylation of polycyclic aromatic hydrocarbons. Orig Life Evol Biosph 33:17–35

    Article  PubMed  CAS  Google Scholar 

  • Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA (1984) Long chain (n-C37-C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. Br Phycol J 19:203–216

    Article  Google Scholar 

  • Martins Z, Botta O, Fogel ML, Sephton MA, Glavin DP, Watson JS, Dworkin JP, Schwartz AW, Ehrenfreund P (2008) Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet Sci Lett 270:130–136

    Article  CAS  Google Scholar 

  • Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425

    Article  PubMed  CAS  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Meeks JC (1974) Chlorophylls. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford

    Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  PubMed  CAS  Google Scholar 

  • Meyers PA, Quinn JG (1973) Factors affecting the association of fatty acids with mineral particles in sea water. Geochim Cosmochim Acta 37:1745–1759

    Article  CAS  Google Scholar 

  • Mishamandani T, Gutierrez T, Berry D, Aitken M (2016) Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons. Environ Microbiol 18:1817–1833

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, Nogi Y, Fujiwara Y, Kawato M, Kubokawa K, Horikoshi K (2008) Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:866–871

    Article  PubMed  Google Scholar 

  • Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165:155–164

    Article  CAS  Google Scholar 

  • Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13:1103–1124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Passow U, Ziervogel K, Aper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7:035301. https://doi.org/10.1088/1748-9326/7/3/035301

    Article  CAS  Google Scholar 

  • Pastuska G (1961) Die Kieselgelschicht-Chromatographie von Phenolen und Phenolcarbensiuren. I Z Anal Chem 179:355–358

    Article  CAS  Google Scholar 

  • Petrov AA (1987) Petroleum hydrocarbons. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Repeta DJ, Hartman NT, John S, Jones AD, Goericke R (2004) Structure elucidation and characterization of polychlorinated biphenyl carboxylic acids as major constituents of chromophoric dissolved organic matter in seawater. Environ Sci Technol 38:5373–5378

    Article  PubMed  CAS  Google Scholar 

  • Rontani J, Bonin PC, John K (1999) Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions. Appl Environ Microbiol 65:5484–5492

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rontani J-F, Bonin P (2011) Production of pristane and phytane in the marine environment: role of prokaryotes. Res Microbiol 162:923–933

    Article  PubMed  CAS  Google Scholar 

  • Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone-eating marine worms with dwarf males. Science 305:668

    Article  PubMed  CAS  Google Scholar 

  • Rowland SJ (1990) Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Org Geochem 15:9–16

    Article  CAS  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  PubMed  CAS  Google Scholar 

  • Schoell M, McCaffrey MA, Fago FJ, Moldowan JM (1992) Carbon isotopic compositions of 28,30-bisnorhopanes and other biological markers in a Monterey crude oil. Geochim Cosmochim Acta 56:1391–1399

    Article  CAS  Google Scholar 

  • Shaw SL, Gantt B, Meskhidze N (2010) Production and emissions of marine isoprene and monoterpenes: a review. Adv Meteorol. https://doi.org/10.1155/2010/408696

  • Simoneit BRT, Alla YL, Ptersypkin VI, Osipov GA (2004) Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N). Geochim Cosmochim Acta 68:2275–2294

    Article  CAS  Google Scholar 

  • Simoneit BRT, Fetzer JC (1996) High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean. Org Geochem 24:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Simoneit BRT, Mazurek MA, Brenner S, Crisp PT, Kaplan IR (1979) Organic geochemistry of recent sediments from Guaymas Basin, Gulf of California. Deep Sea Res A 26:879–891

    Article  CAS  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  PubMed  CAS  Google Scholar 

  • Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159

    Article  PubMed  CAS  Google Scholar 

  • Stortini AM, Martellini T, Del Bubba M, Lepri L, Capodaglio G, Cincinelli A (2008) n-Alkanes, PAHs and surfactants in the sea surface microlayer and sea water samples of the Gerlache Inlet Sea (Antarctica). Microchem J. https://doi.org/10.1016/j.microc.2008:11.005

  • Stracquadanio M, Dinelli E, Trombini C (2003) Role of volcanic dust in the atmospheric transport and deposition of polycyclic aromatic hydrocarbons and mercury. J Environ Monit 5:984–988

    Article  PubMed  CAS  Google Scholar 

  • Thompson H, Angelova A, Bowler B, Jones M, Gutierrez T (2017) Enhanced crude oil biodegradative potential of natural phytoplankton-associated hydrocarbonoclastic bacteria. Environ Microbiol 19:2843–2861

    Article  PubMed  CAS  Google Scholar 

  • Tielens AGGM (2008) Interstellar polycyclic aromatic hydrocarbon molecules. Annu Rev Astron Astrophys 46:289–337

    Article  CAS  Google Scholar 

  • Venkatesan MI, Ruth E, Rao PS, Nath BN, Rao BR (2003) Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean. Appl Geochem 18:845–861

    Article  CAS  Google Scholar 

  • Verdugo P (1994) Polymer gel phase transition in condensation-decondensation of secretory products. Adv Polym Sci 110:145–156

    Article  Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi P (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85

    Article  CAS  Google Scholar 

  • Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30:390A–396A

    Article  PubMed  CAS  Google Scholar 

  • Witt G (1995) Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Mar Pollut Bull 31:237–248

    Article  CAS  Google Scholar 

  • Witt G (2002) Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Mar Chem 79:49–66

    Article  CAS  Google Scholar 

  • Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833

    Article  PubMed  CAS  Google Scholar 

  • Wurl O, Obbard JP (2004) A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. Mar Pollut Bull 48:1016–1030

    Article  PubMed  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  PubMed  CAS  Google Scholar 

  • Zelibor JL, Romankiw L, Hatcher PG et al (1988) Comparative analysis of the chemical composition of mixed and pure cultures of green algae and their decomposed residues by 13C nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 54:1051–1060

    PubMed  PubMed Central  CAS  Google Scholar 

  • ZoBell CE, Allen EC (1935) The significance of marine bacteria in the fouling of submerged surfaces. J Bacteriol 29:239–251

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zook HA (2001) Spacecraft measurements of the cosmic dust flux. In: Accretion of extraterrestrial matter throughout Earth’s history. Springer US, Boston, pp 75–92

    Chapter  Google Scholar 

  • Zsolnay A (1973) Hydrocarbon and chlorophyll: a correlation in the upwelling region off West Africa. Deep-Sea Res Oceanogr Abstr 20:923–925

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gutierrez, T. (2018). Occurrence and Roles of the Obligate Hydrocarbonoclastic Bacteria in the Ocean When There Is No Obvious Hydrocarbon Contamination. In: McGenity, T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-60053-6_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60053-6_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60053-6

  • Online ISBN: 978-3-319-60053-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics