Skip to main content

Micromorphic Approach to Gradient Plasticity and Damage

  • Reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

Eringen and Mindlin’s original micromorphic continuum model is presented and extended towards finite elastic-plastic deformations. The framework is generalized to any additional kinematic degrees of freedom related to plasticity and/or damage mechanisms. It provides a systematic method to develop size–dependent plasticity and damage models, closely related to phase field approaches, that can be applied to hardening and/or softening material behavior. The regularization power of the method is illustrated in the case of damage in single crystals. Special attention is given to the various possible finite deformation formulations enhancing existing frameworks for finite elastoplasticity and damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)

    Article  Google Scholar 

  • E. Aifantis, The physics of plastic deformation. Int. J. Plast. 3, 211–248 (1987)

    Article  MATH  Google Scholar 

  • K. Ammar, B. Appolaire, G. Cailletaud, F. Feyel, F. Forest, Finite element formulation of a phase field model based on the concept of generalized stresses. Comput. Mater. Sci. 45, 800–805 (2009)

    Article  Google Scholar 

  • H. Amor, J.J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. Mech. Phys. Solids 57, 1209–1229 (2009)

    Article  MATH  Google Scholar 

  • O. Aslan, S. Forest, Crack growth modelling in single crystals based on higher order continua. Comput. Mater. Sci. 45, 756–761 (2009)

    Article  Google Scholar 

  • O. Aslan, S. Forest, The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals, in Multiscale Methods in Computational Mechanics, ed. by R. de Borst, E. Ramm. Lecture Notes in Applied and Computational Mechanics, vol. 55, (Springer, New York, 2011), pp. 135–154

    MATH  Google Scholar 

  • O. Aslan, N.M. Cordero, A. Gaubert, S. Forest, Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Auffray, H. Le Quang, Q. He, Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61, 1202–1223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Berezovski, J. Engelbrecht, P. Van, Weakly nonlocal thermoelasticity for microstructured solids: Microdeformation and microtemperature. Arch. Appl. Mech. 84, 1249–1261 (2014)

    Article  MATH  Google Scholar 

  • A. Bertram, Elasticity and Plasticity of Large Deformations (Springer, Heidelberg, 2012)

    Book  MATH  Google Scholar 

  • Besson, J., Cailletaud, G., Chaboche, J.-L., Forest, S., Bletry, M., Non–linear Mechanics of Materials. Solid Mechanics and Its Applications, vol. 167 (Springer, Dordrecht, 2009), 433 p. ISBN:978-90-481-3355-0

    Google Scholar 

  • R. Biswas, L. Poh, A micromorphic computational homogenization framework for heterogeneous materials. J. Mech. Phys. Solids 102, 187–208 (2017)

    Article  MathSciNet  Google Scholar 

  • G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury, S. Quilici, Some elements of microstructural mechanics. Comput. Mater. Sci. 27, 351–374 (2003)

    Article  Google Scholar 

  • A. L. Cauchy, Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bulletin de la Société Philomatique, 9–13 (1822)

    Google Scholar 

  • B. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Dillard, S. Forest, P. Ienny, Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A/Solids 25, 526–549 (2006)

    Article  MATH  Google Scholar 

  • A. Dogui, F. Sidoroff, Kinematic hardening in large elastoplastic strain. Eng. Fract. Mech. 21, 685–695 (1985)

    Article  Google Scholar 

  • J. Dorgan, G. Voyiadjis, Nonlocal dislocation based plasticity incorporating gradients of hardening. Mech. Mater. 35, 721–732 (2003)

    Article  Google Scholar 

  • K. Enakoutsa, J. Leblond, Numerical implementation and assessment of the glpd micromorphic model of ductile rupture. Eur. J. Mech. A/Solids 28, 445–460 (2009)

    Article  MATH  Google Scholar 

  • R. Engelen, M. Geers, F. Baaijens, Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19, 403–433 (2003)

    Article  MATH  Google Scholar 

  • A. Eringen, Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  MATH  Google Scholar 

  • A. Eringen, Microcontinuum Field Theories (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  • A. Eringen, E. Suhubi, Nonlinear theory of simple microelastic solids. Int. J. Eng. Sci. 2(189–203), 389–404 (1964)

    Google Scholar 

  • S. Forest, The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135, 117–131 (2009)

    Article  Google Scholar 

  • S. Forest, Micromorphic media, in Generalized Continua – From the Theory to Engineering Applications. CISM International Centre for Mechanical Sciences, ed. by H. Altenbach, V. Eremeyev. Courses and Lectures No. 541 (Springer, New York, 2012), pp. 249–300

    Chapter  Google Scholar 

  • S. Forest, Nonlinear regularisation operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472, 20150755 (2016)

    Article  MATH  Google Scholar 

  • S. Forest, E.C. Aifantis, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010)

    Article  MATH  Google Scholar 

  • S. Forest, A. Bertram, Formulations of strain gradient plasticity, in Mechanics of Generalized Continua, ed. by H. Altenbach, G.A. Maugin, V. Erofeev. Advanced Structured Materials, vol. 7 (Springer, Berlin/Heidelberg, 2011), pp. 137–150

    Google Scholar 

  • S. Forest, P. Pilvin, Modelling finite deformation of polycrystals using local objective frames. Z. Angew. Math. Mech. 79, S199–S202 (1999)

    Article  MATH  Google Scholar 

  • S. Forest, K. Sab, Finite deformation second order micromorphic theory and its relations to strain and stress gradient models. Math. Mech. Solids (2017). https://doi.org/10.1177/1081286517720844

  • S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  • S. Forest, R. Sievert, Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Forest, D.K. Trinh, Generalized continua and non–homogeneous boundary conditions in homogenization methods. ZAMM 91, 90–109 (2011)

    Article  MATH  Google Scholar 

  • M.G.D. Geers, Finite strain logarithmic hyperelasto-plasticity with softening: A strongly non-local implicit gradient framework. Comput. Methods Appl. Mech. Eng. 193, 3377–3401 (2004)

    Article  MATH  Google Scholar 

  • M. Geers, R.D. Borst, W. Brekelmans, R. Peerlings, On the use of local strain fields for the determination of the intrinsic length scale. Journal de Physique IV 8(Pr8), 167–174 (1998)

    Article  Google Scholar 

  • P. Germain, La méthode des puissances virtuelles en mécanique des milieux continus, premiere partie : théorie du second gradient. J. de Mécanique 12, 235–274 (1973a)

    MathSciNet  MATH  Google Scholar 

  • P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973b)

    Article  MATH  Google Scholar 

  • P. Germain, Q. Nguyen, P. Suquet, Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983)

    Article  MATH  Google Scholar 

  • N. Germain, J. Besson, F. Feyel, Simulation of laminate composites degradation using mesoscopic non–local damage model and non-local layered shell element. Model. Simul. Mater. Sci. Eng. 15, S425–S434 (2007)

    Article  Google Scholar 

  • M. Goodman, S. Cowin, A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Grammenoudis, C. Tsakmakis, Micromorphic continuum part I: Strain and stress tensors and their associated rates. Int. J. Non–Linear Mech. 44, 943–956 (2009)

    Article  Google Scholar 

  • P. Grammenoudis, C. Tsakmakis, D. Hofer, Micromorphic continuum part II: Finite deformation plasticity coupled with damage. Int. J. Non–Linear Mech. 44, 957–974 (2009)

    Article  Google Scholar 

  • M. Gurtin, Generalized Ginzburg–landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Haupt, Continuum Mechanics and Theory of Materials (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  • T. Helfer, Extension of monodimensional fuel performance codes to finite strain analysis using a Lagrangian logarithmic strain framework. Nucl. Eng. Des. 288, 75–81 (2015)

    Article  Google Scholar 

  • C. Hirschberger, P. Steinmann, Classification of concepts in thermodynamically consistent generalized plasticity. ASCE J. Eng. Mech. 135, 156–170 (2009)

    Article  Google Scholar 

  • C. Hirschberger, E. Kuhl, P. Steinmann, On deformational and configurational mechanics of micromorphic hyperelasticity - theory and computation. Comput. Methods Appl. Mech. Eng. 196, 4027–4044 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Horak, M. Jirasek, An extension of small-strain models to the large-strain range based on an additive decomposition of a logarithmic strain. Programs Algorithms Numer. Math. 16, 88–93 (2013)

    MathSciNet  MATH  Google Scholar 

  • G. Hütter, Homogenization of a cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394–408 (2017a)

    Article  MathSciNet  Google Scholar 

  • G. Hütter, A micromechanical gradient extension of Gurson’s model of ductile damage within the theory of microdilatational media. Int. J. Solids Struct. 110-111, 15–23 (2017b)

    Article  Google Scholar 

  • C. Kafadar, A. Eringen, Micropolar media: I the classical theory. Int. J. Eng. Sci. 9, 271–305 (1971)

    Article  MATH  Google Scholar 

  • N. Kirchner, P. Steinmann, A unifying treatise on variational principles for gradient and micromorphic continua. Philos. Mag. 85, 3875–3895 (2005)

    Article  Google Scholar 

  • M. Lazar, G. Maugin, On microcontinuum field theories: The eshelby stress tensor and incompatibility conditions. Philos. Mag. 87, 3853–3870 (2007)

    Article  Google Scholar 

  • E.H. Lee, P. Germain, Elastic–plastic theory at finite strain, in Problems of Plasticity, ed. by A. Sawczuk (Ed), (Noordhoff International Publishing, 1972), pp. 117–133

    Google Scholar 

  • A. Madeo, G. Barbagallo, M.V. d’Agostino, L. Placidi, P. Neff, First evidence of non-locality in real band-gap metamaterials: Determining parameters in the relaxed micromorphic model. Proc. R. Soc. Lond. A 472, 20160169 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Mandel, Plasticité Classique et Viscoplasticité, CISM Courses and Lectures No. 97, Udine (Springer, Berlin, 1971)

    MATH  Google Scholar 

  • J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973)

    Article  MATH  Google Scholar 

  • N. Marchal, S. Flouriot, S. Forest, L. Remy, Crack–tip stress–strain fields in single crystal nickel–base superalloys at high temperature under cyclic loading. Comput. Mater. Sci. 37, 42–50 (2006a)

    Article  Google Scholar 

  • N. Marchal, S. Forest, L. Rémy, S. Duvinage, Simulation of fatigue crack growth in single crystal superalloys using local approach to fracture, in Local Approach to Fracture, 9th European Mechanics of Materials Conference, Euromech–Mecamat. ed. by J. Besson, D. Moinereau, D. Steglich (Presses de l’Ecole des Mines de Paris, Moret–sur–Loing, 2006b), pp. 353–358

    Google Scholar 

  • G. Maugin, The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mech. 35, 1–70 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Maugin, Internal variables and dissipative structures. J. Non–Equilib. Thermo-dyn. 15, 173–192 (1990)

    Google Scholar 

  • G. Maugin, Thermomechanics of Nonlinear Irreversible Behaviors (World Scientific, Singapore/River Edge, 1999)

    Book  MATH  Google Scholar 

  • C. Miehe, Variational gradient plasticity at finite strains. Part I: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Comput. Methods Appl. Mech. Eng. 268, 677–703 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Miehe, N. Apel, M. Lambrecht, Anisotropic additive plasticity in the logarithmic strain space: Modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comp. Methods Appl. Mech. Eng 191, 5383–5425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Miehe, S. Teichtmeister, F. Aldakheel, Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization. Philos. Trans. R. Soc. Lond. A 374(2066) (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Mindlin, Micro–structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Mindlin, Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  • H. Mühlhaus, Continuum Models for Materials with Microstructure (Wiley, Chichester, 1995)

    MATH  Google Scholar 

  • P. Neff, I. Ghiba, A. Madeo, L. Placidi, G. Rosi, A unifying perspective: The relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26, 639–681 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Peerlings, On the role of moving elastic-plastic boundaries in strain gradient plasticity. Model. Simul. Mater. Sci. Eng. 15, S109–S120 (2007)

    Article  Google Scholar 

  • R. Peerlings, M. Geers, R. de Borst, W. Brekelmans, A critical comparison of nonlocal and gradient–enhanced softening continua. Int. J. Solids Struct. 38, 7723–7746 (2001)

    Article  MATH  Google Scholar 

  • R. Peerlings, T. Massart, M. Geers, A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput. Methods Appl. Mech. Eng. 193, 3403–3417 (2004)

    Article  MATH  Google Scholar 

  • K. Pham, H. Amor, J.J. Marigo, C. Maurini, Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20, 618–652 (2011)

    Article  Google Scholar 

  • L. Poh, R. Peerlings, M. Geers, S. Swaddiwudhipong, An implicit tensorial gradient plasticity model - formulation and comparison with a scalar gradient model. Int. J. Solids Struct. 48, 2595–2604 (2011)

    Article  Google Scholar 

  • V.D. Rancourt, B. Appolaire, S. Forest, K. Ammar, Homogenization of viscoplastic constitutive laws within a phase field approach. J. Mech. Phys. Solids 88, 35–48 (2016)

    Article  MathSciNet  Google Scholar 

  • R. Regueiro, On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 47, 786–800 (2010)

    Article  MATH  Google Scholar 

  • G. Rosi, N. Auffray, Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 (2016)

    Article  Google Scholar 

  • K. Saanouni, M. Hamed, Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects. Int. J. Solids Struct. 50, 2289–2309 (2013)

    Article  Google Scholar 

  • C. Sansour, A theory of the elastic–viscoplastic cosserat continuum. Arch. Mech. 50, 577–597 (1998a)

    MATH  Google Scholar 

  • C. Sansour, A unified concept of elastic–viscoplastic Cosserat and micromorphic continua. Journal de Physique IV 8(Pr8), 341–348 (1998b)

    Article  Google Scholar 

  • C. Sansour, S. Skatulla, H. Zbib, A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)

    Article  MATH  Google Scholar 

  • A.V. Shotov, J. Ihlemann, Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change. Int. J. Plast. 63, 183–197 (2014)

    Article  Google Scholar 

  • F. Sidoroff, A. Dogui, Some issues about anisotropic elastic-plastic models at finite strain. Int. J. Solids Struct. 38, 9569–9578 (2001)

    Article  MATH  Google Scholar 

  • J.C. Simo, C. Miehe, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)

    Article  MATH  Google Scholar 

  • H. Steeb, S. Diebels, A thermodynamic–consistent model describing growth and remodeling phenomena. Comput. Mater. Sci. 28, 597–607 (2003)

    Article  Google Scholar 

  • S. Toll, The dissipation inequality in hypoplasticity. Acta Mech. 221, 39–47 (2011)

    Article  MATH  Google Scholar 

  • C. Truesdell, W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik, ed. by S. Flügge, reedition (Springer, Berlin/Heidelberg, 1965)

    Google Scholar 

  • C. Truesdell, R. Toupin, The classical field theories, in Handbuch der Physik, ed. by S. Flügge, vol. 3 (Springer, Berlin, 1960), pp. 226–793

    Chapter  Google Scholar 

  • P. Ván, A. Berezovski, C. Papenfuss, Thermodynamic approach to generalized continua. Contin. Mech. Thermodyn. 26, 403–420 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Vignollet, S. May, R.D. Borst, C. Verhoosel, Phase–field models for brittle and cohesive fracture. Meccanica 49, 2587–2601 (2014)

    Article  MathSciNet  Google Scholar 

  • B. Wcislo, L. Pamin, K. Kowalczyk-Gajewska, Gradient-enhanced damage model for large deformations of elastic-plastic materials. Arch. Mech. 65, 407–428 (2013)

    MathSciNet  Google Scholar 

  • S. Wulfinghoff, E. Bayerschen, T. Böhlke, Conceptual difficulties in plasticity including the gradient of one scalar plastic field variable. PAMM. Proc. Appl. Math. Mech. 14, 317–318 (2014)

    Article  Google Scholar 

  • H. Xiao, O.T. Bruhns, A. Meyers, Existence and uniqueness of the integrable–exactly hypoelastic equation and its significance to finite elasticity. Acta Mech. 138, 31–50 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The first author thanks Prof. O. Aslan for his contribution to the presented micro-morphic damage theory. These contributions are duly cited in the references quoted in the text and listed below.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Forest, S. (2019). Micromorphic Approach to Gradient Plasticity and Damage. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_9

Download citation

Publish with us

Policies and ethics